Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Overview

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

This is the code repository for Advanced Deep Learning with TensoFlow 2 and Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

Please note that the code examples have been updated to support TensorFlow 2.0 Keras API only.

About the Book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.

Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.

Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.

Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

Related Products

Installation

It is recommended to run within conda enviroment. Pls download Anacoda from: Anaconda. To install anaconda:

sh

A machine with at least 1 NVIDIA GPU (1060 or better) is required. The code examples have been tested on 1060, 1080Ti, RTX 2080Ti, V100, RTX Quadro 8000 on Ubuntu 18.04 LTS. Below is a rough guide to install NVIDIA driver and CuDNN to enable GPU support.

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

sudo ubuntu-drivers autoinstall

sudo reboot

nvidia-smi

At the time of writing, nvidia-smishows the NVIDIA driver version is 440.64 and CUDA version is 10.2.

We are almost there. The last set of packages must be installed as follows. Some steps might require sudo access.

conda create --name packt

conda activate packt

cd

git clone https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

cd Advanced-Deep-Learning-with-Keras

pip install -r requirements.txt

sudo apt-get install python-pydot

sudo apt-get install ffmpeg

Test if a simple model can be trained without errors:

cd chapter1-keras-quick-tour

python3 mlp-mnist-1.3.2.py

The final output shows the accuracy of the trained model on MNIST test dataset is about 98.2%.

Alternative TensorFlow Installation

If you are having problems with CUDA libraries (ie tf could not load or find libcudart.so.10.X), TensorFlow and CUDA libraries can be installed together using conda:

pip uninstall tensorflow-gpu
conda install -c anaconda tensorflow-gpu

Advanced Deep Learning with TensorFlow 2 and Keras code examples used in the book.

Chapter 1 - Introduction

  1. MLP on MNIST
  2. CNN on MNIST
  3. RNN on MNIST

Chapter 2 - Deep Networks

  1. Functional API on MNIST
  2. Y-Network on MNIST
  3. ResNet v1 and v2 on CIFAR10
  4. DenseNet on CIFAR10

Chapter 3 - AutoEncoders

  1. Denoising AutoEncoders

Sample outputs for random digits:

Random Digits

  1. Colorization AutoEncoder

Sample outputs for random cifar10 images:

Colorized Images

Chapter 4 - Generative Adversarial Network (GAN)

  1. Deep Convolutional GAN (DCGAN)

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

Sample outputs for random digits:

Random Digits

  1. Conditional (GAN)

Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 5 - Improved GAN

  1. Wasserstein GAN (WGAN)

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).

Sample outputs for random digits:

Random Digits

  1. Least Squares GAN (LSGAN)

Mao, Xudong, et al. "Least squares generative adversarial networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random digits:

Random Digits

  1. Auxiliary Classfier GAN (ACGAN)

Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional image synthesis with auxiliary classifier GANs. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017."

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 6 - GAN with Disentangled Latent Representations

  1. Information Maximizing GAN (InfoGAN)

Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Advances in Neural Information Processing Systems. 2016.

Sample outputs for digits 0 to 9:

Zero to Nine

  1. Stacked GAN

Huang, Xun, et al. "Stacked generative adversarial networks." IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 2017

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 7 - Cross-Domain GAN

  1. CycleGAN

Zhu, Jun-Yan, et al. "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random cifar10 images:

Colorized Images

Sample outputs for MNIST to SVHN:

MNIST2SVHN

Chapter 8 - Variational Autoencoders (VAE)

  1. VAE MLP MNIST
  2. VAE CNN MNIST
  3. Conditional VAE and Beta VAE

Kingma, Diederik P., and Max Welling. "Auto-encoding Variational Bayes." arXiv preprint arXiv:1312.6114 (2013).

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. "Learning structured output representation using deep conditional generative models." Advances in Neural Information Processing Systems. 2015.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. β-VAE: Learning basic visual concepts with a constrained variational framework. ICLR, 2017.

Generated MNIST by navigating the latent space:

MNIST

Chapter 9 - Deep Reinforcement Learning

  1. Q-Learning
  2. Q-Learning on Frozen Lake Environment
  3. DQN and DDQN on Cartpole Environment

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529

DQN on Cartpole Environment:

Cartpole

Chapter 10 - Policy Gradient Methods

  1. REINFORCE, REINFORCE with Baseline, Actor-Critic, A2C

Sutton and Barto, Reinforcement Learning: An Introduction

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine learning. 2016.

Policy Gradient on MountainCar Continuous Environment:

Car

Chapter 11 - Object Detection

  1. Single-Shot Detection

Single-Shot Detection on 3 Objects SSD

Chapter 12 - Semantic Segmentation

  1. FCN

  2. PSPNet

Semantic Segmentation

Semantic Segmentation

Chapter 13 - Unsupervised Learning using Mutual Information

  1. Invariant Information Clustering

  2. MINE: Mutual Information Estimation

MINE MINE

Citation

If you find this work useful, please cite:

@book{atienza2020advanced,
  title={Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more},
  author={Atienza, Rowel},
  year={2020},
  publisher={Packt Publishing Ltd}
}
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022