Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Overview

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

The skip connections in U-Net pass features from the levels of encoder to the ones of decoder in a symmetrical way, which makes U-Net and its variants become state-of-the-art approaches for biomedical image segmentation. However, the U-Net skip connections are unidirectional without considering feedback from the decoder, which may be used to further improve the segmentation performance. In this paper, we exploit the feedback information to recurrently refine the segmentation. We develop a deep bidirectional network based on the least mean square error reconstruction (Lmser) self-organizing network, an early network by folding the autoencoder along the central hidden layer. Such folding makes the neurons on the paired layers between encoder and decoder merge into one, equivalently forming bidirectional skip connections between encoder and decoder. We find that although the feedback links increase the segmentation accuracy, they may bring noise into the segmentation when the network proceeds recurrently. To tackle this issue, we present a gating and masking mechanism on the feedback connections to filter the irrelevant information. Experimental results on MoNuSeg, TNBC, and EM membrane datasets demonstrate that our method are robust and outperforms state-of-the-art methods.

This repository holds the Python implementation of the method described in the paper published in BIBM 2021.

Boheng Cao, Shikui Tu*, Lei Xu, "Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation", BIBM2021

Content

  1. Structure
  2. Requirements
  3. Data
  4. Training
  5. Testing
  6. Acknowledgement

Structure

--checkpoints

# pretrained models

--data

# data for MoNuSeg, TNBC, and EM

--pytorch_version

# code

Requirements

  • Python 3.6 or higher.
  • PIL >= 7.0.0
  • matplotlib >= 3.3.1
  • tqdm >= 4.54.1
  • imgaug >= 0.4.0
  • torch >= 1.5.0
  • torchvision >= 0.6.0

...

Data

The author of BiONet has already gathered data of three datasets (Including EM https://bionets.github.io/Piriform_data.zip).

Please refer to the official website (or project repo) for license and terms of usage.

MoNuSeg: https://monuseg.grand-challenge.org/Data/

TNBC: https://github.com/PeterJackNaylor/DRFNS

We also provide our data (For EM only includes stack 1 and 4) and pretrained models here: https://pan.baidu.com/s/1pHTexUIS8ganD_BwbWoAXA password:sjtu

or

https://drive.google.com/drive/folders/1GJq-AV1L1UNhI2WNMDuynYyGtOYpjQEi?usp=sharing

Training

As an example, for EM segmentation, you can simply run:

python main.py --train_data ./data/EM/train --valid_data ./data/EM/test --exp EM_1 --alpha=0.4

Some of the available arguments are:

Argument Description Default Type
--epochs Training epochs 300 int
--batch_size Batch size 2 int
--steps Steps per epoch 250 int
--lr Learning rate 0.01 float
--lr_decay Learning rate decay 3e-5 float
--iter recurrent iteration 3 int
--train_data Training data path ./data/monuseg/train str
--valid_data Validating data path ./data/monuseg/test str
--valid_dataset Validating dataset type monuseg str
--exp Experiment name(use the same name when testing) 1 str
--evaluate_only If only evaluate using existing model store_true action
--alpha Weight of skip/backward connection 0.4 float

Testing

For MonuSeg and TNBC, you can just use our code to test the model, for example

python main.py --valid_data ./data/tnbc --valid_dataset tnbc --exp your_experiment_id --alpha=0.4 --evaluate_only

For EM, our code can not give the Rand F-score directly, but our code will save the ground truth and result in /checkpoints/your_experiment_id/outputs, you can use the tool ImageJ and code of http://brainiac2.mit.edu/isbi_challenge/evaluation to get Rand F-score.

Acknowledgement

This project would not have been finished without using the codes or files from the following open source projects:

BiONet

Reference

Please cite our work if you find our code/paper is useful to your work.

tbd
Owner
Boheng Cao
SJTU CS
Boheng Cao
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022