PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Related tags

Deep LearningRCAN
Overview

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

This repository is for RCAN introduced in the following paper

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu, "Image Super-Resolution Using Very Deep Residual Channel Attention Networks", ECCV 2018, [arXiv]

The code is built on EDSR (PyTorch) and tested on Ubuntu 14.04/16.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs. RCAN model has also been merged into EDSR (PyTorch).

Visual results reproducing the PSNR/SSIM values in the paper are availble at GoogleDrive. For BI degradation model, scales=2,3,4,8: Results_ECCV2018RCAN_BIX2X3X4X8

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.

CA Channel attention (CA) architecture. RCAB Residual channel attention block (RCAB) architecture. RCAN The architecture of our proposed residual channel attention network (RCAN).

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Specify '--dir_data' based on the HR and LR images path. In option.py, '--ext' is set as 'sep_reset', which first convert .png to .npy. If all the training images (.png) are converted to .npy files, then set '--ext sep' to skip converting files.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

  1. (optional) Download models for our paper and place them in '/RCAN_TrainCode/experiment/model'.

    All the models (BIX2/3/4/8, BDX3) can be downloaded from Dropbox, BaiduYun, or GoogleDrive.

  2. Cd to 'RCAN_TrainCode/code', run the following scripts to train models.

    You can use scripts in file 'TrainRCAN_scripts' to train models for our paper.

    # BI, scale 2, 3, 4, 8
    # RCAN_BIX2_G10R20P48, input=48x48, output=96x96
    python main.py --model RCAN --save RCAN_BIX2_G10R20P48 --scale 2 --n_resgroups 10 --n_resblocks 20 --n_feats 64  --reset --chop --save_results --print_model --patch_size 96
    
    # RCAN_BIX3_G10R20P48, input=48x48, output=144x144
    python main.py --model RCAN --save RCAN_BIX3_G10R20P48 --scale 3 --n_resgroups 10 --n_resblocks 20 --n_feats 64  --reset --chop --save_results --print_model --patch_size 144 --pre_train ../experiment/model/RCAN_BIX2.pt
    
    # RCAN_BIX4_G10R20P48, input=48x48, output=192x192
    python main.py --model RCAN --save RCAN_BIX4_G10R20P48 --scale 4 --n_resgroups 10 --n_resblocks 20 --n_feats 64  --reset --chop --save_results --print_model --patch_size 192 --pre_train ../experiment/model/RCAN_BIX2.pt
    
    # RCAN_BIX8_G10R20P48, input=48x48, output=384x384
    python main.py --model RCAN --save RCAN_BIX8_G10R20P48 --scale 8 --n_resgroups 10 --n_resblocks 20 --n_feats 64  --reset --chop --save_results --print_model --patch_size 384 --pre_train ../experiment/model/RCAN_BIX2.pt
    
    # RCAN_BDX3_G10R20P48, input=48x48, output=144x144
    # specify '--dir_data' to the path of BD training data
    python main.py --model RCAN --save RCAN_BIX3_G10R20P48 --scale 3 --n_resgroups 10 --n_resblocks 20 --n_feats 64  --reset --chop --save_results --print_model --patch_size 144 --pre_train ../experiment/model/RCAN_BIX2.pt
    

Test

Quick start

  1. Download models for our paper and place them in '/RCAN_TestCode/model'.

    All the models (BIX2/3/4/8, BDX3) can be downloaded from Dropbox, BaiduYun, or GoogleDrive.

  2. Cd to '/RCAN_TestCode/code', run the following scripts.

    You can use scripts in file 'TestRCAN_scripts' to produce results for our paper.

    # No self-ensemble: RCAN
    # BI degradation model, X2, X3, X4, X8
    # RCAN_BIX2
    python main.py --data_test MyImage --scale 2 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX2.pt --test_only --save_results --chop --save 'RCAN' --testpath ../LR/LRBI --testset Set5
    # RCAN_BIX3
    python main.py --data_test MyImage --scale 3 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX3.pt --test_only --save_results --chop --save 'RCAN' --testpath ../LR/LRBI --testset Set5
    # RCAN_BIX4
    python main.py --data_test MyImage --scale 4 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX4.pt --test_only --save_results --chop --save 'RCAN' --testpath ../LR/LRBI --testset Set5
    # RCAN_BIX8
    python main.py --data_test MyImage --scale 8 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX8.pt --test_only --save_results --chop --save 'RCAN' --testpath ../LR/LRBI --testset Set5
    # BD degradation model, X3
    # RCAN_BDX3
    python main.py --data_test MyImage --scale 3 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BDX3.pt --test_only --save_results --chop --save 'RCAN' --testpath ../LR/LRBD --degradation BD --testset Set5
    # With self-ensemble: RCAN+
    # RCANplus_BIX2
    python main.py --data_test MyImage --scale 2 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX2.pt --test_only --save_results --chop --self_ensemble --save 'RCANplus' --testpath ../LR/LRBI --testset Set5
    # RCANplus_BIX3
    python main.py --data_test MyImage --scale 3 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX3.pt --test_only --save_results --chop --self_ensemble --save 'RCANplus' --testpath ../LR/LRBI --testset Set5
    # RCANplus_BIX4
    python main.py --data_test MyImage --scale 4 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX4.pt --test_only --save_results --chop --self_ensemble --save 'RCANplus' --testpath ../LR/LRBI --testset Set5
    # RCANplus_BIX8
    python main.py --data_test MyImage --scale 8 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BIX8.pt --test_only --save_results --chop --self_ensemble --save 'RCANplus' --testpath ../LR/LRBI --testset Set5
    # BD degradation model, X3
    # RCANplus_BDX3
    python main.py --data_test MyImage --scale 3 --model RCAN --n_resgroups 10 --n_resblocks 20 --n_feats 64 --pre_train ../model/RCAN_BDX3.pt --test_only --save_results --chop --self_ensemble  --save 'RCANplus' --testpath ../LR/LRBD --degradation BD --testset Set5

The whole test pipeline

  1. Prepare test data.

    Place the original test sets (e.g., Set5, other test sets are available from GoogleDrive or Baidu) in 'OriginalTestData'.

    Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

  2. Conduct image SR.

    See Quick start

  3. Evaluate the results.

    Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Results

Quantitative Results

PSNR_SSIM_BI PSNR_SSIM_BI PSNR_SSIM_BI Quantitative results with BI degradation model. Best and second best results are highlighted and underlined

For more results, please refer to our main papar and supplementary file.

Visual Results

Visual_PSNR_SSIM_BI Visual results with Bicubic (BI) degradation (4×) on “img 074” from Urban100

Visual_PSNR_SSIM_BI Visual_PSNR_SSIM_BI Visual_PSNR_SSIM_BI Visual_PSNR_SSIM_BI Visual comparison for 4× SR with BI model

Visual_PSNR_SSIM_BI Visual comparison for 8× SR with BI model

Visual_PSNR_SSIM_BD Visual comparison for 3× SR with BD model

Visual_Compare_GAN_PSNR_SSIM_BD Visual_Compare_GAN_PSNR_SSIM_BD Visual_Compare_GAN_PSNR_SSIM_BD Visual comparison for 4× SR with BI model on Set14 and B100 datasets. The best results are highlighted. SRResNet, SRResNet VGG22, SRGAN MSE, SR- GAN VGG22, and SRGAN VGG54 are proposed in [CVPR2017SRGAN], ENet E and ENet PAT are proposed in [ICCV2017EnhanceNet]. These comparisons mainly show the effectiveness of our proposed RCAN against GAN based methods

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{zhang2018rcan,
    title={Image Super-Resolution Using Very Deep Residual Channel Attention Networks},
    author={Zhang, Yulun and Li, Kunpeng and Li, Kai and Wang, Lichen and Zhong, Bineng and Fu, Yun},
    booktitle={ECCV},
    year={2018}
}

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their codes of EDSR Torch version and PyTorch version.

Owner
Yulun Zhang
Yulun Zhang
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022