Convert openmmlab (not only mmdetection) series model to tensorrt

Related tags

Deep Learningmm2trt
Overview

MMDet to TensorRT

This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is experiment.

support:

  • fp16
  • int8(experiment)
  • batched input
  • dynamic input shape
  • combination of different modules
  • deepstream support

Any advices, bug reports and stars are welcome.

License

This project is released under the Apache 2.0 license.

Requirement

  • install mmdetection:

    # mim is so cool!
    pip install openmim
    mim install mmdet==2.14.0
  • install torch2trt_dynamic:

    git clone https://github.com/grimoire/torch2trt_dynamic.git torch2trt_dynamic
    cd torch2trt_dynamic
    python setup.py develop
  • install amirstan_plugin:

    • Install tensorrt: TensorRT

    • clone repo and build plugin

      git clone --depth=1 https://github.com/grimoire/amirstan_plugin.git
      cd amirstan_plugin
      git submodule update --init --progress --depth=1
      mkdir build
      cd build
      cmake -DTENSORRT_DIR=${TENSORRT_DIR} ..
      make -j10
    • DON'T FORGET setting the envoirment variable(in ~/.bashrc):

      export AMIRSTAN_LIBRARY_PATH=${amirstan_plugin_root}/build/lib

Installation

Host

git clone https://github.com/grimoire/mmdetection-to-tensorrt.git
cd mmdetection-to-tensorrt
python setup.py develop

Docker

Build docker image

# cuda11.1 TensorRT7.2.2 pytorch1.8 cuda11.1
sudo docker build -t mmdet2trt_docker:v1.0 docker/

You can also specify CUDA, Pytorch and Torchvision versions with docker build args by:

# cuda11.1 tensorrt7.2.2 pytorch1.6 cuda10.2
sudo docker build -t mmdet2trt_docker:v1.0 --build-arg TORCH_VERSION=1.6.0 --build-arg TORCHVISION_VERSION=0.7.0 --build-arg CUDA=10.2 --docker/

Run (will show the help for the CLI entrypoint)

sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} mmdet2trt_docker:v1.0

Or if you want to open a terminal inside de container:

sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} --entrypoint bash mmdet2trt_docker:v1.0

Example conversion:

sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} mmdet2trt_docker:v1.0 ${bind_path}/config.py ${bind_path}/checkpoint.pth ${bind_path}/output.trt

Usage

how to create a TensorRT model from mmdet model (converting might take few minutes)(Might have some warning when converting.) detail can be found in getting_started.md

CLI

mmdet2trt ${CONFIG_PATH} ${CHECKPOINT_PATH} ${OUTPUT_PATH}

Run mmdet2trt -h for help on optional arguments.

Python

opt_shape_param=[
    [
        [1,3,320,320],      # min shape
        [1,3,800,1344],     # optimize shape
        [1,3,1344,1344],    # max shape
    ]
]
max_workspace_size=1<<30    # some module and tactic need large workspace.
trt_model = mmdet2trt(cfg_path, weight_path, opt_shape_param=opt_shape_param, fp16_mode=True, max_workspace_size=max_workspace_size)

# save converted model
torch.save(trt_model.state_dict(), save_model_path)

# save engine if you want to use it in c++ api
with open(save_engine_path, mode='wb') as f:
    f.write(trt_model.state_dict()['engine'])

Note:

  • The input of the engine is the tensor after preprocess.
  • The output of the engine is num_dets, bboxes, scores, class_ids. if you enable the enable_mask flag, there will be another output mask.
  • The bboxes output of the engine did not divided by scale factor.

how to use the converted model

from mmdet.apis import inference_detector
from mmdet2trt.apis import create_wrap_detector

# create wrap detector
trt_detector = create_wrap_detector(trt_model, cfg_path, device_id)

# result share same format as mmdetection
result = inference_detector(trt_detector, image_path)

# visualize
trt_detector.show_result(
    image_path,
    result,
    score_thr=score_thr,
    win_name='mmdet2trt',
    show=True)

Try demo in demo/inference.py, or demo/cpp if you want to do inference with c++ api.

Read getting_started.md for more details.

How does it works?

Most other project use pytorch=>ONNX=>tensorRT route, This repo convert pytorch=>tensorRT directly, avoid unnecessary ONNX IR. Read how-does-it-work for detail.

Support Model/Module

  • Faster R-CNN
  • Cascade R-CNN
  • Double-Head R-CNN
  • Group Normalization
  • Weight Standardization
  • DCN
  • SSD
  • RetinaNet
  • Libra R-CNN
  • FCOS
  • Fovea
  • CARAFE
  • FreeAnchor
  • RepPoints
  • NAS-FPN
  • ATSS
  • PAFPN
  • FSAF
  • GCNet
  • Guided Anchoring
  • Generalized Attention
  • Dynamic R-CNN
  • Hybrid Task Cascade
  • DetectoRS
  • Side-Aware Boundary Localization
  • YOLOv3
  • PAA
  • CornerNet(WIP)
  • Generalized Focal Loss
  • Grid RCNN
  • VFNet
  • GROIE
  • Mask R-CNN(experiment)
  • Cascade Mask R-CNN(experiment)
  • Cascade RPN
  • DETR
  • YOLOX

Tested on:

  • torch=1.8.1
  • tensorrt=8.0.1.6
  • mmdetection=2.18.0
  • cuda=11.1

If you find any error, please report it in the issue.

FAQ

read this page if you meet any problem.

Contact

This repo is maintained by @grimoire

Discuss group: QQ:1107959378

And send your resume to my e-mail if you want to join @OpenMMLab. Please read the JD for detail: link

Owner
JinTian
You know who I am.
JinTian
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023