Code for the paper: Sketch Your Own GAN

Overview

Sketch Your Own GAN

Project | Paper | Youtube

Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the input sketch. While our new model changes an object’s shape and pose, other visual cues such as color, texture, background, are faithfully preserved after the modification.


Sheng-Yu Wang1, David Bau2, Jun-Yan Zhu1.
CMU1, MIT CSAIL2
In ICCV, 2021.

Training code, evaluation code, and datasets will be released soon.

Results

Our method can customize a pre-trained GAN to match input sketches.

Interpolation using our customized models. Latent space interpolation is smooth with our customized models.

Image 1
Interoplation
Image 2

Image editing using our customized models. Given a real image (a), we project it to the original model's latent space z using Huh et al. (b). (c) We then feed the projected z to the our standing cat model trained on sketches. (d) Finally, we showed edit the image with add fur operation using GANSpace.

Failure case. Our method is not capable of generating images to match the Attneave’s cat sketch or the horse sketch by Picasso. We note that Attneave’s cat depicts a complex pose, and Picasso’s sketches are drawn with a distinctive style, both of which make our method struggle.

Getting Started

Clone our repo

git clone [email protected]:PeterWang512/GANSketching.git
cd GANSketching

Install packages

  • Install PyTorch (version >= 1.6.0) (pytorch.org)
    pip install -r requirements.txt

Download model weights

  • Run bash weights/download_weights.sh

Generate samples from a customized model

This command runs the customized model specified by ckpt, and generates samples to save_dir.

# generates samples from the "standing cat" model.
python generate.py --ckpt weights/photosketch_standing_cat_noaug.pth --save_dir output/samples_standing_cat

# generates samples from the cat face model in Figure. 1 of the paper.
python generate.py --ckpt weights/by_author_cat_aug.pth --save_dir output/samples_teaser_cat

Latent space edits by GANSpace

Our model preserves the latent space editability of the original model. Our models can apply the same edits using the latents reported in Härkönen et.al. (GANSpace).

# add fur to the standing cats
python ganspace.py --obj cat --comp_id 27 --scalar 50 --layers 2,4 --ckpt weights/photosketch_standing_cat_noaug.pth --save_dir output/ganspace_fur_standing_cat

# close the eyes of the standing cats
python ganspace.py --obj cat --comp_id 45 --scalar 60 --layers 5,7 --ckpt weights/photosketch_standing_cat_noaug.pth --save_dir output/ganspace_eye_standing_cat

Acknowledgments

This repository borrows partially from SPADE, stylegan2-pytorch, PhotoSketch, GANSpace, and data-efficient-gans.

Reference

If you find this useful for your research, please cite the following work.

@inproceedings{wang2021sketch,
  title={Sketch Your Own GAN},
  author={Wang, Sheng-Yu and Bau, David and Zhu, Jun-Yan},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Feel free to contact us with any comments or feedback.

2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022