SNE-RoadSeg in PyTorch, ECCV 2020

Overview

SNE-RoadSeg

Introduction

This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection, accepted by ECCV 2020. This is our project page.

In this repo, we provide the training and testing setup for the KITTI Road Dataset. We test our code in Python 3.7, CUDA 10.0, cuDNN 7 and PyTorch 1.1. We provide Dockerfile to build the docker image we use.

Setup

Please setup the KITTI Road Dataset and pretrained weights according to the following folder structure:

SNE-RoadSeg
 |-- checkpoints
 |  |-- kitti
 |  |  |-- kitti_net_RoadSeg.pth
 |-- data
 |-- datasets
 |  |-- kitti
 |  |  |-- training
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- gt_image_2
 |  |  |  |-- image_2
 |  |  |-- validation
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- gt_image_2
 |  |  |  |-- image_2
 |  |  |-- testing
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- image_2
 |-- examples
 ...

image_2, gt_image_2 and calib can be downloaded from the KITTI Road Dataset. We implement depth_u16 based on the LiDAR data provided in the KITTI Road Dataset, and it can be downloaded from here. Note that depth_u16 has the uint16 data format, and the real depth in meters can be obtained by double(depth_u16)/1000. Moreover, the pretrained weights kitti_net_RoadSeg.pth for our SNE-RoadSeg-152 can be downloaded from here.

Usage

Run an example

We provide one example in examples. To run it, you only need to setup the checkpoints folder as mentioned above. Then, run the following script:

bash ./scripts/run_example.sh

and you will see normal.png, pred.png and prob_map.png in examples. normal.png is the normal estimation by our SNE; pred.png is the freespace prediction by our SNE-RoadSeg; and prob_map.png is the probability map predicted by our SNE-RoadSeg.

Testing for KITTI submission

For KITTI submission, you need to setup the checkpoints and the datasets/kitti/testing folder as mentioned above. Then, run the following script:

bash ./scripts/test.sh

and you will get the prediction results in testresults. After that you can follow the submission instructions to transform the prediction results into the BEV perspective for submission.

If everything works fine, you will get a MaxF score of 96.74 for URBAN. Note that this is our re-implemented weights, and it is very similar to the reported ones in the paper (a MaxF score of 96.75 for URBAN).

Training on the KITTI dataset

For training, you need to setup the datasets/kitti folder as mentioned above. You can split the original training set into a new training set and a validation set as you like. Then, run the following script:

bash ./scripts/train.sh

and the weights will be saved in checkpoints and the tensorboard record containing the loss curves as well as the performance on the validation set will be save in runs. Note that use-sne in train.sh controls if we will use our SNE model, and the default is True. If you delete it, our RoadSeg will take depth images as input, and you also need to delete use-sne in test.sh to avoid errors when testing.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{fan2020sne,
  author = {Fan, Rui and Wang, Hengli and Cai, Peide and Liu, Ming},
  title = {SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year = {2020},
  organization = {Springer},
}

Acknowledgement

Our code is inspired by pytorch-CycleGAN-and-pix2pix, and we thank Jun-Yan Zhu for their great work.

Owner
Ph.D. candidate in HKUST, supervised by Prof.Ming Liu, a member of RAM-LAB, Robotics Institute
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021