v objective diffusion inference code for JAX.

Overview

v-diffusion-jax

v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman).

The models are denoising diffusion probabilistic models (https://arxiv.org/abs/2006.11239), which are trained to reverse a gradual noising process, allowing the models to generate samples from the learned data distributions starting from random noise. DDIM-style deterministic sampling (https://arxiv.org/abs/2010.02502) is also supported. The models are also trained on continuous timesteps. They use the 'v' objective from Progressive Distillation for Fast Sampling of Diffusion Models (https://openreview.net/forum?id=TIdIXIpzhoI).

Dependencies

  • JAX (installation instructions)

  • dm-haiku, einops, numpy, optax, Pillow, tqdm (install with pip install)

  • CLIP_JAX (https://github.com/kingoflolz/CLIP_JAX), and its additional pip-installable dependencies: ftfy, regex, torch, torchvision (it does not need GPU PyTorch). If you git clone --recursive this repo, it should fetch CLIP_JAX automatically.

Model checkpoints:

  • Danbooru SFW 128x128, SHA-256 8551fe663dae988e619444efd99995775c7618af2f15ab5d8caf6b123513c334

  • ImageNet 128x128, SHA-256 4fc7c817b9aaa9018c6dbcbf5cd444a42f4a01856b34c49039f57fe48e090530

  • WikiArt 128x128, SHA-256 8fbe4e0206262996ff76d3f82a18dc67d3edd28631d4725e0154b51d00b9f91a

  • WikiArt 256x256, SHA-256 ebc6e77865bbb2d91dad1a0bfb670079c4992684a0e97caa28f784924c3afd81

Sampling

Example

If the model checkpoints are stored in checkpoints/, the following will generate an image:

./clip_sample.py "a friendly robot, watercolor by James Gurney" --model wikiart_256 --seed 0

If they are somewhere else, you need to specify the path to the checkpoint with --checkpoint.

Unconditional sampling

usage: sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT] [--eta ETA] --model
                 {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                 [--steps STEPS]

--batch-size: sample this many images at a time (default 1)

--checkpoint: manually specify the model checkpoint file

--eta: set to 0 for deterministic (DDIM) sampling, 1 (the default) for stochastic (DDPM) sampling, and in between to interpolate between the two. DDIM is preferred for low numbers of timesteps.

--model: specify the model to use

-n: sample until this many images are sampled (default 1)

--seed: specify the random seed (default 0)

--steps: specify the number of diffusion timesteps (default is 1000, can lower for faster but lower quality sampling)

CLIP guided sampling

CLIP guided sampling lets you generate images with diffusion models conditional on the output matching a text prompt.

usage: clip_sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT]
                      [--clip-guidance-scale CLIP_GUIDANCE_SCALE] [--eta ETA] --model
                      {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                      [--steps STEPS]
                      prompt

clip_sample.py has the same options as sample.py and these additional ones:

prompt: the text prompt to use

--clip-guidance-scale: how strongly the result should match the text prompt (default 1000)

Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

Joรฃo Pedro Rodrigues Mattos 0 Sep 15, 2021
๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | ็ฎ€ไฝ“ไธญๆ–‡ This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
HandFoldingNet โœŒ๏ธ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet โœŒ๏ธ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022