Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

Related tags

Deep LearningUNO
Overview

A Unified Objective for Novel Class Discovery

This is the official repository for the paper:

A Unified Objective for Novel Class Discovery
Enrico Fini, Enver Sangineto Stéphane Lathuilière, Zhun Zhong Moin Nabi, Elisa Ricci
ICCV 2021 (Oral)

Paper: ArXiv
Project Page: Website

Abstract: In this paper, we study the problem of Novel Class Discovery (NCD). NCD aims at inferring novel object categories in an unlabeled set by leveraging from prior knowledge of a labeled set containing different, but related classes. Existing approaches tackle this problem by considering multiple objective functions, usually involving specialized loss terms for the labeled and the unlabeled samples respectively, and often requiring auxiliary regularization terms. In this paper we depart from this traditional scheme and introduce a UNified Objective function (UNO) for discovering novel classes, with the explicit purpose of favoring synergy between supervised and unsupervised learning. Using a multi-view self-labeling strategy, we generate pseudo-labels that can be treated homogeneously with ground truth labels. This leads to a single classification objective operating on both known and unknown classes. Despite its simplicity, UNO outperforms the state of the art by a significant margin on several benchmarks (+10% on CIFAR-100 and +8% on ImageNet).



A visual comparison of our UNified Objective (UNO) with previous works.



Overview of the proposed architecture.


Installation

Our implementation is based on PyTorch and PyTorch Lightning. Logging is performed using Wandb. We recommend using conda to create the environment and install dependencies:

conda create --name uno python=3.8
conda activate uno
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=XX.X -c pytorch
pip install pytorch-lightning==1.1.3 lightning-bolts==0.3.0 wandb sklearn
mkdir -p logs/wandb checkpoints

Select the appropriate cudatoolkit version according to your system. Optionally, you can also replace pillow with pillow-simd (if your machine supports it) for faster data loading:

pip uninstall pillow
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

Datasets

For CIFAR10 and CIFAR100 you can just pass --download and the datasets will be automatically downloaded in the directory specified with --data_dir YOUR_DATA_DIR. For ImageNet you will need to follow the instructions on this website.

Checkpoints

All checkpoints (after the pretraining phase) are available on Google Drive. We recommend using gdown to download them directly to your server. First, install gdown with the following command:

pip install gdown

Then, open the Google Drive folder, choose the checkpoint you want to download, do right click and select Get link > Copy link. For instance, for CIFAR10 the link will look something like this:

https://drive.google.com/file/d/1Pa3qgHwK_1JkA-k492gAjWPM5AW76-rl/view?usp=sharing

Now, remove /view?usp=sharing and replace file/d/ with uc?id=. Finally, download the checkpoint running the following command:

gdown https://drive.google.com/uc?id=1Pa3qgHwK_1JkA-k492gAjWPM5AW76-rl

Logging

Logging is performed with Wandb. Please create an account and specify your --entity YOUR_ENTITY and --project YOUR_PROJECT. For debugging, or if you do not want all the perks of Wandb, you can disable logging by passing --offline.

Commands

Pretraining

Running pretraining on CIFAR10 (5 labeled classes):

python main_pretrain.py --dataset CIFAR10 --gpus 1  --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 5 --num_unlabeled_classes 5 --comment 5_5

Running pretraining on CIFAR100-80 (80 labeled classes):

python main_pretrain.py --dataset CIFAR100 --gpus 1 --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 80 --num_unlabeled_classes 20 --comment 80_20

Running pretraining on CIFAR100-50 (50 labeled classes):

python main_pretrain.py --dataset CIFAR100 --gpus 1 --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 50 --num_unlabeled_classes 50 --comment 50_50

Running pretraining on ImageNet (882 labeled classes):

python main_pretrain.py --gpus 2 --num_workers 8 --distributed_backend ddp --sync_batchnorm --precision 16 --dataset ImageNet --data_dir PATH/TO/IMAGENET --max_epochs 100 --warmup_epochs 5 --batch_size 256 --num_labeled_classes 882 --num_unlabeled_classes 30 --comment 882_30

Discovery

Running discovery on CIFAR10 (5 labeled classes, 5 unlabeled classes):

python main_discover.py --dataset CIFAR10 --gpus 1 --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 5 --num_unlabeled_classes 5 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-CIFAR10.cp --num_heads 4 --comment 5_5

Running discovery on CIFAR100-20 (80 labeled classes, 20 unlabeled classes):

python main_discover.py --dataset CIFAR100 --gpus 1 --max_epochs 200 --batch_size 256 --num_labeled_classes 80 --num_unlabeled_classes 20 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-CIFAR100-80_20.cp --num_heads 4 --comment 80_20 --precision 16

Running discovery on CIFAR100-50 (50 labeled classes, 50 unlabeled classes):

python main_discover.py --dataset CIFAR100 --gpus 1 --max_epochs 200 --batch_size 256 --num_labeled_classes 50 --num_unlabeled_classes 50 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-CIFAR100-50_50.cp --num_heads 4 --comment 50_50 --precision 16

Running discovery on ImageNet (882 labeled classes, 30 unlabeled classes)

python main_discover.py --dataset ImageNet --gpus 2 --num_workers 8 --distributed_backend ddp --sync_batchnorm --precision 16  --data_dir PATH/TO/IMAGENET --max_epochs 60 --base_lr 0.02 --warmup_epochs 5 --batch_size 256 --num_labeled_classes 882 --num_unlabeled_classes 30 --num_heads 3 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-ImageNet.cp --imagenet_split A --comment 882_30-A

NOTE: to run ImageNet split B/C just pass --imagenet_split B/C.

Citation

If you like our work, please cite our paper:

@InProceedings{fini2021unified,
    author    = {Fini, Enrico and Sangineto, Enver and Lathuilière, Stéphane and Zhong, Zhun and Nabi, Moin and Ricci, Elisa},
    title     = {A Unified Objective for Novel Class Discovery},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year      = {2021}
}
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021