This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

Overview

deSpeckNet-TF-GEE

This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling published in IEEE Transactions on Geoscience and Remote Sensing. The original paper version of the code was implemented in Matlab but I think implementing the method in Tensorflow and Google Earth Engine (GEE) will improve its usabiltiy in the remote sensing community. The implementation uses python and seamlessly integrates Sentinel-1 SAR image preparation in GEE with deep learning in Tensorflow.

Note: I have made some modificatons from the original implementation, such as the data is processed in dB scale, patch density is different from the original Matlab implementation and the optimizer is Adam.

Architecture

deSpeckNet uses a simaese architecture to reconstruct the clean image and the original noisy image using two mean square error loss functions. To fine tune the model to new images with unknown speckle distribution, the model does not require any clean reference image.
drawing1 drawing_finetune

If interested, the pre-print version of the article is freely available here

Usage

To train a model, the user needs to provide an area of interest in GEE geometry format and run the prepare_data.py first to prepare the training datasets. The user needs to select training mode to run the script. The user needs to also specify their preference for storage of data as 'GCS' or 'Drive'. It is assumed the user have installed and configured Google cloud SDK on their local machine. For users that prefer to use google drive, the drive should be mounted at /content/drive for the scripts to run.

To fine tune the model, the user needs to execute the prepare_data.py script one more time in tuning mode. Once a model is trained, the user can directly execute the test.py script to make inference on the fine tuned area. By default, the despeckled image is uploaded to GEE.

A jupyter notebook version of the scripts is also included in the notebook folder, which should make it easier for users to run the code in Google colab without worrying about software dependencies.

Dependencies

To use the python scripts, we assume you have a gmail account and have already authenticated GEE and Cloud SDK on your local machine. The scripts are written in Tensorflow 2.7 so there may be issues with earlier versions of Tensorflow. To avoid these steps users could alternatively use the jupyter notebooks available in the notebooks folder to run the scripts in colab.

Acknowledgment

Some functions were adopted from Google Earth Engine example workflow page.

Reference

A. G. Mullissa, D. Marcos, D. Tuia, M. Herold and J. Reiche, "deSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2022, Art no. 5200315, doi: 10.1109/TGRS.2020.3042694.

Owner
Adugna Mullissa
Dr. Adugna Mullissa is a Radar remote sensing and machine learning scientist at Wageningen University and Research in the Netherlands.
Adugna Mullissa
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022