This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

Overview

deSpeckNet-TF-GEE

This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling published in IEEE Transactions on Geoscience and Remote Sensing. The original paper version of the code was implemented in Matlab but I think implementing the method in Tensorflow and Google Earth Engine (GEE) will improve its usabiltiy in the remote sensing community. The implementation uses python and seamlessly integrates Sentinel-1 SAR image preparation in GEE with deep learning in Tensorflow.

Note: I have made some modificatons from the original implementation, such as the data is processed in dB scale, patch density is different from the original Matlab implementation and the optimizer is Adam.

Architecture

deSpeckNet uses a simaese architecture to reconstruct the clean image and the original noisy image using two mean square error loss functions. To fine tune the model to new images with unknown speckle distribution, the model does not require any clean reference image.
drawing1 drawing_finetune

If interested, the pre-print version of the article is freely available here

Usage

To train a model, the user needs to provide an area of interest in GEE geometry format and run the prepare_data.py first to prepare the training datasets. The user needs to select training mode to run the script. The user needs to also specify their preference for storage of data as 'GCS' or 'Drive'. It is assumed the user have installed and configured Google cloud SDK on their local machine. For users that prefer to use google drive, the drive should be mounted at /content/drive for the scripts to run.

To fine tune the model, the user needs to execute the prepare_data.py script one more time in tuning mode. Once a model is trained, the user can directly execute the test.py script to make inference on the fine tuned area. By default, the despeckled image is uploaded to GEE.

A jupyter notebook version of the scripts is also included in the notebook folder, which should make it easier for users to run the code in Google colab without worrying about software dependencies.

Dependencies

To use the python scripts, we assume you have a gmail account and have already authenticated GEE and Cloud SDK on your local machine. The scripts are written in Tensorflow 2.7 so there may be issues with earlier versions of Tensorflow. To avoid these steps users could alternatively use the jupyter notebooks available in the notebooks folder to run the scripts in colab.

Acknowledgment

Some functions were adopted from Google Earth Engine example workflow page.

Reference

A. G. Mullissa, D. Marcos, D. Tuia, M. Herold and J. Reiche, "deSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2022, Art no. 5200315, doi: 10.1109/TGRS.2020.3042694.

Owner
Adugna Mullissa
Dr. Adugna Mullissa is a Radar remote sensing and machine learning scientist at Wageningen University and Research in the Netherlands.
Adugna Mullissa
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022