Computing Shapley values using VAEAC

Overview

Shapley values and the VAEAC method

In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features", see Olsen et al. (2021).

The variational autoencoder with arbitrary condiditioning (VAEAC) approach is based on the work of (Ivanov et al., 2019). The VAEAC is an extension of the regular variational autoencoder (Kingma and Welling, 2019). Instead of giving a probabilistic representation for the distribution equation it gives a representation for the conditional distribution equation, for all possible feature subsets equation simultaneously, where equation is the set of all features.

To make the VAEAC methodology work in the Shapley value framework, established in the R-package Shapr (Sellereite and Jullum, 2019), we have made alterations to the original implementation of Ivanov.

The VAEAC model is implemented in Pytorch, hence, that portion of the repository is written in Python. To compute the Shapley values, we have written the necessary R-code to make the VAEAC approach run on top of the R-package shapr.

Setup

In addition to the prerequisites required by Ivanov, we also need several R-packages. All prerequisites are specified in requirements.txt.

This code was tested on Linux and macOS (should also work on Windows), Python 3.6.4, PyTorch 1.0. and R 4.0.2.

To user has to specify the system path to the Python environment and the system path of the downloaded repository in Source_Shapr_VAEAC.R.

Example

The following example shows how a random forest model is trained on the Abalone data set from the UCI machine learning repository, and how shapr explains the individual predictions.

Note that we only use Diameter (continuous), ShuckedWeight (continuous), and Sex (categorical) as features and let the response be Rings, that is, the age of the abalone.

# Import libraries
library(shapr)
library(ranger)
library(data.table)

# Load the R files needed for computing Shapley values using VAEAC.
source("/Users/larsolsen/Desktop/PhD/R_Codes/Source_Shapr_VAEAC.R")

# Set the working directory to be the root folder of the GitHub repository. 
setwd("~/PhD/Paper1/Code_for_GitHub")

# Read in the Abalone data set.
abalone = readRDS("data/Abalone.data")
str(abalone)

# Predict rings based on Diameter, ShuckedWeight, and Sex (categorical), using a random forrest model.
model = ranger(Rings ~ Diameter + ShuckedWeight + Sex, data = abalone[abalone$test_instance == FALSE,])

# Specifying the phi_0, i.e. the expected prediction without any features.
phi_0 <- mean(abalone$Rings[abalone$test_instance == FALSE])

# Prepare the data for explanation. Diameter, ShuckedWeight, and Sex correspond to 3,6,9.
explainer <- shapr(abalone[abalone$test_instance == FALSE, c(3,6,9)], model)
#> The specified model provides feature classes that are NA. The classes of data are taken as the truth.

# Train the VAEAC model with specified parameters and add it to the explainer
explainer_added_vaeac = add_vaeac_to_explainer(
  explainer, 
  epochs = 30L,
  width = 32L,
  depth = 3L,
  latent_dim = 8L,
  lr = 0.002,
  num_different_vaeac_initiate = 2L,
  epochs_initiation_phase = 2L,
  validation_iwae_num_samples = 25L,
  verbose_summary = TRUE)

# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
# the VAEAC distribution approach with parameters defined above
explanation = explain.vaeac(abalone[abalone$test_instance == TRUE][1:8,c(3,6,9)],
                            approach = "vaeac",
                            explainer = explainer_added_vaeac,
                            prediction_zero = phi_0,
                            which_vaeac_model = "best")

# Printing the Shapley values for the test data.
# For more information about the interpretation of the values in the table, see ?shapr::explain.
print(explanation$dt)
#>        none   Diameter  ShuckedWeight        Sex
#> 1: 9.927152  0.63282471     0.4175608  0.4499676
#> 2: 9.927152 -0.79836795    -0.6419839  1.5737014
#> 3: 9.927152 -0.93500891    -1.1925897 -0.9140548
#> 4: 9.927152  0.57225851     0.5306906 -1.3036202
#> 5: 9.927152 -1.24280895    -1.1766845  1.2437640
#> 6: 9.927152 -0.77290507    -0.5976597  1.5194251
#> 7: 9.927152 -0.05275627     0.1306941 -1.1755597
#> 8: 9.927153  0.44593977     0.1788577  0.6895557

# Finally, we plot the resulting explanations.
plot(explanation, plot_phi0 = FALSE)

Citation

If you find this code useful in your research, please consider citing our paper:

@misc{Olsen2021Shapley,
      title={Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features}, 
      author={Lars Henry Berge Olsen and Ingrid Kristine Glad and Martin Jullum and Kjersti Aas},
      year={2021},
      eprint={2111.13507},
      archivePrefix={arXiv},
      primaryClass={stat.ML},
      url={https://arxiv.org/abs/2111.13507}
}

References

Ivanov, O., Figurnov, M., and Vetrov, D. (2019). “Variational Autoencoder with ArbitraryConditioning”. In:International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2014). "Auto-Encoding Variational Bayes". In: 2nd International Conference on Learning Representations, ICLR 2014.

Olsen, L. H. B., Glad, I. K., Jullum, M. and Aas, K. (2021). "Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features".

Sellereite, N. and Jullum, M. (2019). “shapr: An R-package for explaining machine learningmodels with dependence-aware Shapley values”. In:Journal of Open Source Softwarevol. 5,no. 46, p. 2027.

Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022