A memory-efficient implementation of DenseNets

Overview

efficient_densenet_pytorch

A PyTorch >=1.0 implementation of DenseNets, optimized to save GPU memory.

Recent updates

  1. Now works on PyTorch 1.0! It uses the checkpointing feature, which makes this code WAY more efficient!!!

Motivation

While DenseNets are fairly easy to implement in deep learning frameworks, most implmementations (such as the original) tend to be memory-hungry. In particular, the number of intermediate feature maps generated by batch normalization and concatenation operations grows quadratically with network depth. It is worth emphasizing that this is not a property inherent to DenseNets, but rather to the implementation.

This implementation uses a new strategy to reduce the memory consumption of DenseNets. We use checkpointing to compute the Batch Norm and concatenation feature maps. These intermediate feature maps are discarded during the forward pass and recomputed for the backward pass. This adds 15-20% of time overhead for training, but reduces feature map consumption from quadratic to linear.

This implementation is inspired by this technical report, which outlines a strategy for efficient DenseNets via memory sharing.

Requirements

  • PyTorch >=1.0.0
  • CUDA

Usage

In your existing project: There is one file in the models folder.

If you care about speed, and memory is not an option, pass the efficient=False argument into the DenseNet constructor. Otherwise, pass in efficient=True.

Options:

  • All options are described in the docstrings of the model files
  • The depth is controlled by block_config option
  • efficient=True uses the memory-efficient version
  • If you want to use the model for ImageNet, set small_inputs=False. For CIFAR or SVHN, set small_inputs=True.

Running the demo:

The only extra package you need to install is python-fire:

pip install fire
  • Single GPU:
CUDA_VISIBLE_DEVICES=0 python demo.py --efficient True --data <path_to_folder_with_cifar10> --save <path_to_save_dir>
  • Multiple GPU:
CUDA_VISIBLE_DEVICES=0,1,2 python demo.py --efficient True --data <path_to_folder_with_cifar10> --save <path_to_save_dir>

Options:

  • --depth (int) - depth of the network (number of convolution layers) (default 40)
  • --growth_rate (int) - number of features added per DenseNet layer (default 12)
  • --n_epochs (int) - number of epochs for training (default 300)
  • --batch_size (int) - size of minibatch (default 256)
  • --seed (int) - manually set the random seed (default None)

Performance

A comparison of the two implementations (each is a DenseNet-BC with 100 layers, batch size 64, tested on a NVIDIA Pascal Titan-X):

Implementation Memory cosumption (GB/GPU) Speed (sec/mini batch)
Naive 2.863 0.165
Efficient 1.605 0.207
Efficient (multi-GPU) 0.985 -

Other efficient implementations

Reference

@article{pleiss2017memory,
  title={Memory-Efficient Implementation of DenseNets},
  author={Pleiss, Geoff and Chen, Danlu and Huang, Gao and Li, Tongcheng and van der Maaten, Laurens and Weinberger, Kilian Q},
  journal={arXiv preprint arXiv:1707.06990},
  year={2017}
}
Owner
Geoff Pleiss
Geoff Pleiss
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022