Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Overview

PWC

Multi-label Classification with Partial Annotations using Class-aware Selective Loss


Paper | Pretrained models

Official PyTorch Implementation

Emanuel Ben-Baruch, Tal Ridnik, Itamar Friedman, Avi Ben-Cohen, Nadav Zamir, Asaf Noy, Lihi Zelnik-Manor
DAMO Academy, Alibaba Group

Abstract

Large-scale multi-label classification datasets are commonly, and perhaps inevitably, partially annotated. That is, only a small subset of labels are annotated per sample. Different methods for handling the missing labels induce different properties on the model and impact its accuracy. In this work, we analyze the partial labeling problem, then propose a solution based on two key ideas. First, un-annotated labels should be treated selectively according to two probability quantities: the class distribution in the overall dataset and the specific label likelihood for a given data sample. We propose to estimate the class distribution using a dedicated temporary model, and we show its improved efficiency over a naive estimation computed using the dataset's partial annotations. Second, during the training of the target model, we emphasize the contribution of annotated labels over originally un-annotated labels by using a dedicated asymmetric loss. Experiments conducted on three partially labeled datasets, OpenImages, LVIS, and simulated-COCO, demonstrate the effectiveness of our approach. Specifically, with our novel selective approach, we achieve state-of-the-art results on OpenImages dataset. Code will be made available.

Class-aware Selective Approach

An overview of our approach is summarized in the following figure:

Loss Implementation

Our loss consists of a selective approach for adjusting the training mode for each class individualy and a partial asymmetric loss.

An implementation of the Class-aware Selective Loss (CSL) can be found here.

  • class PartialSelectiveLoss(nn.Module)

Pretrained Models

We provide models pretrained on the OpenImages datasset with different modes and architectures:

Model Architecture Link mAP
Ignore TResNet-M link 85.38
Negative TResNet-M link 85.85
Selective (CSL) TResNet-M link 86.72
Selective (CSL) TResNet-L link 87.34

Inference Code (Demo)

We provide inference code, that demonstrate how to load the model, pre-process an image and do inference. Example run of OpenImages model (after downloading the relevant model):

python infer.py  \
--dataset_type=OpenImages \
--model_name=tresnet_m \
--model_path=./models_local/mtresnet_opim_86.72.pth \
--pic_path=./pics/10162266293_c7634cbda9_o.jpg \
--input_size=448

Result Examples

Training Code

Training code is provided in (train.py). Also, code for simulating partial annotation for the MS-COCO dataset is available (here). In particular, two "partial" simulation schemes are implemented: fix-per-class(FPC) and random-per-sample (RPS).

  • FPC: For each class, we randomly sample a fixed number of positive annotations and the same number of negative annotations. The rest of the annotations are dropped.
  • RPA: We omit each annotation with probability p.

Pretrained weights using the ImageNet-21k dataset can be found here: link
Pretrained weights using the ImageNet-1k dataset can be found here: link

Example of training with RPS simulation:

--data=/mnt/datasets/COCO/COCO_2014
--model-path=models/pretrain/mtresnet_21k
--gamma_pos=0
--gamma_neg=4
--gamma_unann=4
--simulate_partial_type=rps
--simulate_partial_param=0.5
--partial_loss_mode=selective
--likelihood_topk=5
--prior_threshold=0.5
--prior_path=./outputs/priors/prior_fpc_1000.csv

Example of training with FPC simulation:

--data=/mnt/datasets/COCO/COCO_2014
--model-path=models/pretrain/mtresnet_21k
--gamma_pos=0
--gamma_neg=4
--gamma_unann=4
--simulate_partial_type=fpc
--simulate_partial_param=1000
--partial_loss_mode=selective
--likelihood_topk=5
--prior_threshold=0.5
--prior_path=./outputs/priors/prior_fpc_1000.csv

Typical Training Results

FPC (1,000) simulation scheme:

Model mAP
Ignore, CE 76.46
Negative, CE 81.24
Negative, ASL (4,1) 81.64
CSL - Selective, P-ASL(4,3,1) 83.44

RPS (0.5) simulation scheme:

Model mAP
Ignore, CE 84.90
Negative, CE 81.21
Negative, ASL (4,1) 81.91
CSL- Selective, P-ASL(4,1,1) 85.21

Estimating the Class Distribution

The training code contains also the procedure for estimting the class distribution from the data. Our approach enables to rank the classes based on training a temporary model usinig the Ignore mode. link

Top 10 classes:

Method Top 10 ranked classes
Original 'person', 'chair', 'car', 'dining table', 'cup', 'bottle', 'bowl', 'handbag', 'truck', 'backpack'
Estiimate (Ignore mode) 'person', 'chair', 'handbag', 'cup', 'bench', 'bottle', 'backpack', 'car', 'cell phone', 'potted plant'
Estimate (Negative mode) 'kite' 'truck' 'carrot' 'baseball glove' 'tennis racket' 'remote' 'cat' 'tie' 'horse' 'boat'

Citation

@misc{benbaruch2021multilabel,
      title={Multi-label Classification with Partial Annotations using Class-aware Selective Loss}, 
      author={Emanuel Ben-Baruch and Tal Ridnik and Itamar Friedman and Avi Ben-Cohen and Nadav Zamir and Asaf Noy and Lihi Zelnik-Manor},
      year={2021},
      eprint={2110.10955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Several images from OpenImages dataset are used in this project. ֿ
Some components of this code implementation are adapted from the repository https://github.com/Alibaba-MIIL/ASL.

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022