This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

Overview

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Project Page | Paper | Supplementary | Video | Slides | Blog | Talk

Add Clevr Tranlation Horizontal Cars Interpolate Shape Faces

If you find our code or paper useful, please cite as

@inproceedings{GIRAFFE,
    title = {GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields},
    author = {Niemeyer, Michael and Geiger, Andreas},
    booktitle = {Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

TL; DR - Quick Start

Rotating Cars Tranlation Horizontal Cars Tranlation Horizontal Cars

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called giraffe using

conda env create -f environment.yml
conda activate giraffe

You can now test our code on the provided pre-trained models. For example, simply run

python render.py configs/256res/cars_256_pretrained.yaml

This script should create a model output folder out/cars256_pretrained. The animations are then saved to the respective subfolders in out/cars256_pretrained/rendering.

Usage

Datasets

To train a model from scratch or to use our ground truth activations for evaluation, you have to download the respective dataset.

For this, please run

bash scripts/download_dataset.sh

and following the instructions. This script should download and unpack the data automatically into the data/ folder.

Controllable Image Synthesis

To render images of a trained model, run

python render.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file. The easiest way is to use a pre-trained model. You can do this by using one of the config files which are indicated with *_pretrained.yaml.

For example, for our model trained on Cars at 256x256 pixels, run

python render.py configs/256res/cars_256_pretrained.yaml

or for celebA-HQ at 256x256 pixels, run

python render.py configs/256res/celebahq_256_pretrained.yaml

Our script will automatically download the model checkpoints and render images. You can find the outputs in the out/*_pretrained folders.

Please note that the config files *_pretrained.yaml are only for evaluation or rendering, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pre-trained model.

FID Evaluation

For evaluation of the models, we provide the script eval.py. You can run it using

python eval.py CONFIG.yaml

The script generates 20000 images and calculates the FID score.

Note: For some experiments, the numbers in the paper might slightly differ because we used the evaluation protocol from GRAF to fairly compare against the methods reported in GRAF.

Training

Finally, to train a new network from scratch, run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs

where you replace OUTPUT_DIR with the respective output directory. For available training options, please take a look at configs/default.yaml.

2D-GAN Baseline

For convinience, we have implemented a 2D-GAN baseline which closely follows this GAN_stability repo. For example, you can train a 2D-GAN on CompCars at 64x64 pixels similar to our GIRAFFE method by running

python train.py configs/64res/cars_64_2dgan.yaml

Using Your Own Dataset

If you want to train a model on a new dataset, you first need to generate ground truth activations for the intermediate or final FID calculations. For this, you can use the script in scripts/calc_fid/precalc_fid.py. For example, if you want to generate an FID file for the comprehensive cars dataset at 64x64 pixels, you need to run

python scripts/precalc_fid.py  "data/comprehensive_cars/images/*.jpg" --regex True --gpu 0 --out-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz" --img-size 64

or for LSUN churches, you need to run

python scripts/precalc_fid.py path/to/LSUN --class-name scene_categories/church_outdoor_train_lmdb --lsun True --gpu 0 --out-file data/church/fid_files/church_64.npz --img-size 64

Note: We apply the same transformations to the ground truth images for this FID calculation as we do during training. If you want to use your own dataset, you need to adjust the image transformations in the script accordingly. Further, you might need to adjust the object-level and camera transformations to your dataset.

Evaluating Generated Images

We provide the script eval_files.py for evaluating the FID score of your own generated images. For example, if you would like to evaluate your images on CompCars at 64x64 pixels, save them to an npy file and run

python eval_files.py --input-file "path/to/your/images.npy" --gt-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz"

Futher Information

More Work on Implicit Representations

If you like the GIRAFFE project, please check out related works on neural representions from our group:

A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021