The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

Related tags

Deep LearningASMAGAN
Overview

ASMA-GAN

Anisotropic Stroke Control for Multiple Artists Style Transfer

Proceedings of the 28th ACM International Conference on Multimedia

The official repository with Pytorch

[Arxiv paper]

logo

title

Methodology

Framework

Dependencies

  • python3.6+
  • pytorch1.5+
  • torchvision
  • pyyaml
  • paramiko
  • pandas
  • requests
  • tensorboard
  • tensorboardX
  • tqdm

Installation

We highly recommend you to use Anaconda for installation

conda create -n ASMA python=3.6
conda activate ASMA
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
pip install pyyaml paramiko pandas requests tensorboard tensorboardX tqdm

Preparation

  • Traning dataset
    • Coming soon
  • pre-trained model
    • Download the model from Github Releases, and unzip the files to ./train_logs/

Usage

To test with pretrained model

The command line below will generate 1088*1920 HD style migration pictures of 11 painters for each picture of testImgRoot (11 painters include: Berthe Moriso , Edvard Munch, Ernst Ludwig Kirchner, Jackson Pollock, Wassily Kandinsky, Oscar-Claude Monet, Nicholas Roerich, Paul Cézanne, Pablo Picasso ,Samuel Colman, Vincent Willem van Gogh. The output image(s) can be found in ./test_logs/ASMAfinal/

  • Example of style transfer with all 11 artists style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle -1 
  • Example of style transfer with Pablo Picasso style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8 
  • Example of style transfer with Wassily Kandinsky style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 4

--version refers to the ASMAGAN training logs name.

--testImgRoot can be a folder with images or the path of a single picture.You can assign the image(s) you want to perform style transfer to this argument.

--specify_sytle is used to specify which painter's style is used for style transfer. When the value is -1, 11 painters' styles are used for image(s) respectively for style transfer. The values corresponding to each painter's style are as follows [0: Berthe Moriso, 1: Edvard Munch, 2: Ernst Ludwig Kirchner, 3: Jackson Pollock, 4: Wassily Kandinsky, 5: Oscar-Claude Monet, 6: Nicholas Roerich, 7: Paul Cézanne, 8: Pablo Picasso, 9 : Samuel Colman, 10: Vincent Willem van Gogh]

Training

Coming soon

To cite our paper

@inproceedings{DBLP:conf/mm/ChenYLQN20,
  author    = {Xuanhong Chen and
               Xirui Yan and
               Naiyuan Liu and
               Ting Qiu and
               Bingbing Ni},
  title     = {Anisotropic Stroke Control for Multiple Artists Style Transfer},
  booktitle = {{MM} '20: The 28th {ACM} International Conference on Multimedia, 2020},
  publisher = {{ACM}},
  year      = {2020},
  url       = {https://doi.org/10.1145/3394171.3413770},
  doi       = {10.1145/3394171.3413770},
  timestamp = {Thu, 15 Oct 2020 16:32:08 +0200},
  biburl    = {https://dblp.org/rec/conf/mm/ChenYLQN20.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Some Results

Results1

Related Projects

Learn about our other projects [RainNet], [Sketch Generation], [CooGAN], [Knowledge Style Transfer], [SimSwap],[ASMA-GAN],[Pretrained_VGG19].

High Resolution Results

Comments
  • Can't download pre-trained model

    Can't download pre-trained model

    Hi! Could you please check your pre-trained model. The follow links is no found. Thank you https://github.com/neuralchen/ASMAGAN/releases/download/v.1.0/ASMAfinal.zip

    opened by namdn 5
  • Thank you for your great project. When will the training code be released

    Thank you for your great project. When will the training code be released

    Thank you for your great project.

    1. When will the training code be released.
    2. I want to get more painters how do I do that, how do I make the training datasets, how much data do I need
    3. Looking forward to your reply
    opened by zhanghongyong123456 5
  • Fine Tuning for single class

    Fine Tuning for single class

    Hello team, I would like to finetune your pretrained model for just five new class (total output will be five), how should I use the finetune? Thank you!

    opened by minhtcai 0
  • KeyError 1920

    KeyError 1920

    using the official command: python main.py --mode test --cuda 0 --version ASMAfinal --dataloader_workers 8 --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8

    then error happened Generator Script Name: Conditional_Generator_asm 11 classes Finished preprocessing the test dataset, total image number: 25... /home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/transforms.py:332: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( Traceback (most recent call last): File "/home/ama/ASMAGAN/main.py", line 266, in tester.test() File "/home/ama/ASMAGAN/test_scripts/tester_common_useage.py", line 50, in test test_data = TestDataset(test_img,batch_size) File "/home/ama/ASMAGAN/data_tools/test_data_loader_resize.py", line 36, in init transform.append(T.Resize(1088,1920)) File "/home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/transforms.py", line 336, in init interpolation = _interpolation_modes_from_int(interpolation) File "/home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/functional.py", line 47, in _interpolation_modes_from_int return inverse_modes_mapping[i] KeyError: 1920

    opened by Kayce001 1
  • Change aspect ratio of images

    Change aspect ratio of images

    test code change aspect ratio of input images so output images are deformed to fix this i make some correction at "test_data_loader_resize.py"

    image

    opened by birolkuyumcu 0
  • RuntimeError: cuDNN

    RuntimeError: cuDNN

    Hi I get the following error when running the code:

    RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED when calling backward()

    I would appreciate your help on how to resolve this.

    Thank you!

    Gero

    opened by Limbicnation 8
Releases(v.1.1)
Owner
Six_God
Six_God
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023