A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Overview

Graph Wavelet Neural Network

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019).

Abstract

We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.

A reference Tensorflow implementation is accessible [here].

This repository provides an implementation of Graph Wavelet Neural Network as described in the paper:

Graph Wavelet Neural Network. Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng. ICLR, 2019. [Paper]


Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0
PyGSP             0.5.1

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training the model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path        STR   Input graph path.   Default is `input/cora_edges.csv`.
  --features-path    STR   Features path.      Default is `input/cora_features.json`.
  --target-path      STR   Target path.        Default is `input/cora_target.csv`.
  --log-path         STR   Log path.           Default is `logs/cora_logs.json`.

Model options

  --epochs                INT       Number of Adam epochs.         Default is 200.
  --learning-rate         FLOAT     Number of training epochs.     Default is 0.01.
  --weight-decay          FLOAT     Weight decay.                  Default is 5*10**-4.
  --filters               INT       Number of filters.             Default is 16.
  --dropout               FLOAT     Dropout probability.           Default is 0.5.
  --test-size             FLOAT     Test set ratio.                Default is 0.2.
  --seed                  INT       Random seeds.                  Default is 42.
  --approximation-order   INT       Chebyshev polynomial order.    Default is 3.
  --tolerance             FLOAT     Wavelet coefficient limit.     Default is 10**-4.
  --scale                 FLOAT     Heat kernel scale.             Default is 1.0.

Examples

The following commands learn the weights of a graph wavelet neural network and saves the logs. The first example trains a graph wavelet neural network on the default dataset with standard hyperparameter settings. Saving the logs at the default path.

python src/main.py

Training a model with more filters in the first layer.

python src/main.py --filters 32

Approximationg the wavelets with polynomials that have an order of 5.

python src/main.py --approximation-order 5

License


Comments
  • what's the meanning of the

    what's the meanning of the "feature matrix"?

    Hello author, sorry about a stupid question. But the Cora dataset has Cora.cites corresponding your cora_edges.csv, and Cora.content's paper index and paper category for your cora_target.csv, so I don't understand the meanning of your cora_features.json . In the beginning, I just think it's an adjacency matrix of all nodes(paper index), however, the content are inconsistent. Such as ,in cora_edges.csv it's as the picture as follw: image and in cora_features.json it's : image So I am confused , and hope for your answer. Thank you very much.

    opened by CindyTing 7
  • How can l use this code for graph classification ?

    How can l use this code for graph classification ?

    Hi @benedekrozemberczki ,

    Let me first thank you for this promising work.

    I would like to apply your GWNN to graph classification problems rather than nodes classification.

    Do you have any extension for that ?

    Thank you

    opened by Benjiou 4
  • the kernel

    the kernel

    Hi, author, There was a variable in the code called diagnoal_weight_filter 屏幕截图 2021-01-16 204442 I think the variable should change in the trainning time,but it never changed when I debugging. It's so confusing. And I wonder if the variable conduct the same role as the diagnoal_weight_filer in the tensorflow implementation will change.

    opened by maxmit233 3
  • Fatal Python error: Segmentation fault

    Fatal Python error: Segmentation fault

    hi, author. These days i've been watching the program. But when I run on this code, I find an error happened during the time. Can you give me some suggestions?

    image

    image

    opened by Evelyn-coder 2
  • something about wavelet basis

    something about wavelet basis

    Hello~, Thank you for your paper. when I read the paper, I think about what is the connection between wavelet basis and Fourier basis, can you give me some tips?

    opened by ICDI0906 1
  • RuntimeError: the derivative for 'index' is not implemented

    RuntimeError: the derivative for 'index' is not implemented

    Hello, I was running the example and got this error.

    python src/main.py
    +---------------------+----------------------------+
    |      Parameter      |           Value            |
    +=====================+============================+
    | Approximation order | 20                         |
    +---------------------+----------------------------+
    | Dropout             | 0.500                      |
    +---------------------+----------------------------+
    | Edge path           | ./input/cora_edges.csv     |
    +---------------------+----------------------------+
    | Epochs              | 300                        |
    +---------------------+----------------------------+
    | Features path       | ./input/cora_features.json |
    +---------------------+----------------------------+
    | Filters             | 16                         |
    +---------------------+----------------------------+
    | Learning rate       | 0.001                      |
    +---------------------+----------------------------+
    | Log path            | ./logs/cora_logs.json      |
    +---------------------+----------------------------+
    | Scale               | 1                          |
    +---------------------+----------------------------+
    | Seed                | 42                         |
    +---------------------+----------------------------+
    | Target path         | ./input/cora_target.csv    |
    +---------------------+----------------------------+
    | Test size           | 0.200                      |
    +---------------------+----------------------------+
    | Tolerance           | 0.000                      |
    +---------------------+----------------------------+
    | Weight decay        | 0.001                      |
    +---------------------+----------------------------+
    
    Wavelet calculation and sparsification started.
    
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 237.23it/s]
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 228.91it/s]
    
    Normalizing the sparsified wavelets.
    
    Density of wavelets: 0.2%.
    Density of inverse wavelets: 0.04%.
    
    Training.
    
    Loss:   0%|                                                                                          | 0/300 [00:00<?, ?it/s]Traceback (most recent call last):
      File "src/main.py", line 24, in <module>
        main()
      File "src/main.py", line 18, in main
        trainer.fit()
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 131, in fit
        prediction = self.model(self.phi_indices, self.phi_values , self.phi_inverse_indices, self.phi_inverse_values, self.feature_indices, self.feature_values)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 44, in forward
        deep_features_1 = self.convolution_1(phi_indices, phi_values, phi_inverse_indices, phi_inverse_values, feature_indices, feature_values, self.args.dropout)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn_layer.py", line 55, in forward
        localized_features = spmm(phi_product_indices, phi_product_values, self.ncount, filtered_features)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_sparse/spmm.py", line 21, in spmm
        out = scatter_add(out, row, dim=0, dim_size=m)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_scatter/add.py", line 73, in scatter_add
        return out.scatter_add_(dim, index, src)
    RuntimeError: the derivative for 'index' is not implemented
    
    opened by youjinChung 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022