A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Overview

Graph Wavelet Neural Network

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019).

Abstract

We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.

A reference Tensorflow implementation is accessible [here].

This repository provides an implementation of Graph Wavelet Neural Network as described in the paper:

Graph Wavelet Neural Network. Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng. ICLR, 2019. [Paper]


Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0
PyGSP             0.5.1

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training the model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path        STR   Input graph path.   Default is `input/cora_edges.csv`.
  --features-path    STR   Features path.      Default is `input/cora_features.json`.
  --target-path      STR   Target path.        Default is `input/cora_target.csv`.
  --log-path         STR   Log path.           Default is `logs/cora_logs.json`.

Model options

  --epochs                INT       Number of Adam epochs.         Default is 200.
  --learning-rate         FLOAT     Number of training epochs.     Default is 0.01.
  --weight-decay          FLOAT     Weight decay.                  Default is 5*10**-4.
  --filters               INT       Number of filters.             Default is 16.
  --dropout               FLOAT     Dropout probability.           Default is 0.5.
  --test-size             FLOAT     Test set ratio.                Default is 0.2.
  --seed                  INT       Random seeds.                  Default is 42.
  --approximation-order   INT       Chebyshev polynomial order.    Default is 3.
  --tolerance             FLOAT     Wavelet coefficient limit.     Default is 10**-4.
  --scale                 FLOAT     Heat kernel scale.             Default is 1.0.

Examples

The following commands learn the weights of a graph wavelet neural network and saves the logs. The first example trains a graph wavelet neural network on the default dataset with standard hyperparameter settings. Saving the logs at the default path.

python src/main.py

Training a model with more filters in the first layer.

python src/main.py --filters 32

Approximationg the wavelets with polynomials that have an order of 5.

python src/main.py --approximation-order 5

License


Comments
  • what's the meanning of the

    what's the meanning of the "feature matrix"?

    Hello author, sorry about a stupid question. But the Cora dataset has Cora.cites corresponding your cora_edges.csv, and Cora.content's paper index and paper category for your cora_target.csv, so I don't understand the meanning of your cora_features.json . In the beginning, I just think it's an adjacency matrix of all nodes(paper index), however, the content are inconsistent. Such as ,in cora_edges.csv it's as the picture as follw: image and in cora_features.json it's : image So I am confused , and hope for your answer. Thank you very much.

    opened by CindyTing 7
  • How can l use this code for graph classification ?

    How can l use this code for graph classification ?

    Hi @benedekrozemberczki ,

    Let me first thank you for this promising work.

    I would like to apply your GWNN to graph classification problems rather than nodes classification.

    Do you have any extension for that ?

    Thank you

    opened by Benjiou 4
  • the kernel

    the kernel

    Hi, author, There was a variable in the code called diagnoal_weight_filter 屏幕截图 2021-01-16 204442 I think the variable should change in the trainning time,but it never changed when I debugging. It's so confusing. And I wonder if the variable conduct the same role as the diagnoal_weight_filer in the tensorflow implementation will change.

    opened by maxmit233 3
  • Fatal Python error: Segmentation fault

    Fatal Python error: Segmentation fault

    hi, author. These days i've been watching the program. But when I run on this code, I find an error happened during the time. Can you give me some suggestions?

    image

    image

    opened by Evelyn-coder 2
  • something about wavelet basis

    something about wavelet basis

    Hello~, Thank you for your paper. when I read the paper, I think about what is the connection between wavelet basis and Fourier basis, can you give me some tips?

    opened by ICDI0906 1
  • RuntimeError: the derivative for 'index' is not implemented

    RuntimeError: the derivative for 'index' is not implemented

    Hello, I was running the example and got this error.

    python src/main.py
    +---------------------+----------------------------+
    |      Parameter      |           Value            |
    +=====================+============================+
    | Approximation order | 20                         |
    +---------------------+----------------------------+
    | Dropout             | 0.500                      |
    +---------------------+----------------------------+
    | Edge path           | ./input/cora_edges.csv     |
    +---------------------+----------------------------+
    | Epochs              | 300                        |
    +---------------------+----------------------------+
    | Features path       | ./input/cora_features.json |
    +---------------------+----------------------------+
    | Filters             | 16                         |
    +---------------------+----------------------------+
    | Learning rate       | 0.001                      |
    +---------------------+----------------------------+
    | Log path            | ./logs/cora_logs.json      |
    +---------------------+----------------------------+
    | Scale               | 1                          |
    +---------------------+----------------------------+
    | Seed                | 42                         |
    +---------------------+----------------------------+
    | Target path         | ./input/cora_target.csv    |
    +---------------------+----------------------------+
    | Test size           | 0.200                      |
    +---------------------+----------------------------+
    | Tolerance           | 0.000                      |
    +---------------------+----------------------------+
    | Weight decay        | 0.001                      |
    +---------------------+----------------------------+
    
    Wavelet calculation and sparsification started.
    
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 237.23it/s]
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 228.91it/s]
    
    Normalizing the sparsified wavelets.
    
    Density of wavelets: 0.2%.
    Density of inverse wavelets: 0.04%.
    
    Training.
    
    Loss:   0%|                                                                                          | 0/300 [00:00<?, ?it/s]Traceback (most recent call last):
      File "src/main.py", line 24, in <module>
        main()
      File "src/main.py", line 18, in main
        trainer.fit()
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 131, in fit
        prediction = self.model(self.phi_indices, self.phi_values , self.phi_inverse_indices, self.phi_inverse_values, self.feature_indices, self.feature_values)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 44, in forward
        deep_features_1 = self.convolution_1(phi_indices, phi_values, phi_inverse_indices, phi_inverse_values, feature_indices, feature_values, self.args.dropout)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn_layer.py", line 55, in forward
        localized_features = spmm(phi_product_indices, phi_product_values, self.ncount, filtered_features)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_sparse/spmm.py", line 21, in spmm
        out = scatter_add(out, row, dim=0, dim_size=m)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_scatter/add.py", line 73, in scatter_add
        return out.scatter_add_(dim, index, src)
    RuntimeError: the derivative for 'index' is not implemented
    
    opened by youjinChung 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022