PyTorch trainer and model for Sequence Classification

Overview

PyTorch-trainer-and-model-for-Sequence-Classification

After cloning the repository, modify your training data so that the training data is a .csv file and it has 2 columns: Text and Label

In the below example, we will assume that our training data has 3 labels, the name of our training data file is train_data.csv

Example Usage

Import dependencies

import pandas as pd
import numpy as np
from transformers import AutoModel, AutoTokenizer, AutoConfig

from EarlyStopping import *
from modelling import *
from utils import *

Specify arguments

args.pretrained_path will be the path of our pretrained language model

class args:
    fold = 0
    pretrained_path = 'bert-base-uncased'
    max_length = 400
    train_batch_size = 16
    val_batch_size = 64
    epochs = 5
    learning_rate = 1e-5
    accumulation_steps = 2
    num_splits = 5

Create train and validation data

In this example we will train the model using cross-validation. We will split our training data into args.num_splits folds.

df = pd.read_csv('./train_data.csv')
df = create_k_folds(df, args.num_splits)

df_train = df[df['kfold'] == args.fold].reset_index(drop = True)
df_valid = df[df['kfold'] == args.fold].reset_index(drop = True)

Load the language model and its tokenizer

config = AutoConfig.from_pretrained(args.path)
tokenizer = AutoTokenizer.from_pretrained(args.path)
model_transformer = AutoModel.from_pretrained(args.path)

Prepare train and validation dataloaders

features = []
for i in range(len(df_train)):
    features.append(prepare_features(tokenizer, df_train.iloc[i, :].to_dict(), args.max_length))
    
train_dataset = CreateDataset(features)
train_dataloader = create_dataloader(train_dataset, args.train_batch_size, 'train')

features = []
for i in range(len(df_valid)):
    features.append(prepare_features(tokenizer, df_valid.iloc[i, :].to_dict(), args.max_length))
    
val_dataset = CreateDataset(features)
val_dataloader = create_dataloader(val_dataset, args.val_batch_size, 'val')

Use EarlyStopping and customize the score function

NOTE: The customized score function should have 2 parameters: the logits, and the actual label

def accuracy(logits, labels):
    logits = logits.detach().cpu().numpy()
    labels = labels.detach().cpu().numpy()
    pred_classes = np.argmax(logits * (1 / np.sum(logits, axis = -1)).reshape(logits.shape[0], 1), axis = -1)
    pred_classes = pred_classes.reshape(labels.shape)
    
    return np.sum(pred_classes == labels) / labels.shape[0]

es = EarlyStopping(mode = 'max', patience = 3, monitor = 'val_acc', out_path = 'model.bin')
es.monitor_score_function = accuracy

Create and train the model

Calling the fit method, the training process will begin

model = Model(config, model_transformer, num_labels = 3)
model.to('cuda')
num_train_steps = int(len(train_dataset) / args.train_batch_size * args.epochs)
model.fit(args.epochs, args.learning_rate, num_train_steps, args.accumulation_steps, 
          train_dataloader, val_dataloader, es)

NOTE: To complete the cross-validation training process, run the code above again with args.fold equals 1, 2, ..., args.num_splits - 1

Owner
NhanTieu
NhanTieu
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022