✔️ Visual, reactive testing library for Julia. Time machine included.

Overview

PlutoTest.jl (alpha release)

Visual, reactive testing library for Julia

A macro @test that you can use to verify your code's correctness. But instead of just saying "Pass" or "Fail", let's try to show you why a test failed.

  • time travel to replay the execution step-by-step
  • ⭐️ multimedia display ⭐️ to make results easy to read

Demo screencap

Try this demo in your browser

Install & use

First, update Pluto to at least 0.15! That's it, Pluto will automatically install the package when you import/using it.

Inside your notebook, use the @test macro to test whether something returns true:

julia> using PlutoTest

julia> @test 1 + 1 == 2

This package is still an alpha release, don't use it to @test is_safe(crazy_new_bike_design).

Reactive

This testing library is designed to be used inside Pluto.jl, a reactive notebook. If you write your tests in the same notebook as your code, then Pluto will automatically re-run the affected tests after you make a change. Tests that are unaffected will not need to re-run. Neat!

Navigation

When a test gets re-run and it fails outside of your viewport, you will be notified with a red dot on the edge of the screen. You can click on a dot to jump to the test, multiple dots indicate multiple tests.

(Only enabled on Chrome and Firefox for now.)

Future: GitHub Action

In the future, it will be easy to run Pluto-based, PlutoTest-based tests automatically on GitHub Actions or Travis CI. In addition to running your tests, it will upload a rendered notebook as artifact to the test run (sample). If a test failed, you can open the notebook and see why.

How does it work?

Take a look at the source code! (It's a Pluto notebook 🌝 )

You might also like...
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Comments
  • Be more similar to Test.@test interface

    Be more similar to [email protected] interface

    Specifically, and most hard to work around, getting local variables to work:

    let
      i = 10
      @test i == 10
    end
    

    It does, but I'd like to have errors and testsets too (or rather just have the notebook a bit cleaned up)

    opened by dralletje 6
  • Show test pass at first frame

    Show test pass at first frame

    Currently, we always show the second-to-last frame as the default, until you move the timeline:

    This makes sense for test failures, because probably the last function call went from computed results to false, like a == call. But for test passes, it often just shows something trivial.

    This PR makes the first frame the default for test passes. This means that you can hide all code, and sort of quickly see what was being tested:

    But as you see in the screenshot, a large test expression means that it takes up more vertical space...

    opened by fonsp 3
  • allow HyperTextLiteral v0.9

    allow HyperTextLiteral v0.9

    Currently, compat for HypertextLiteral is set to v0.6 to 0.8. The most recent version of HypertextLiteral, 0.9, is not supported. This causes issues when using PlutoTest together with other packages which require HypertextLiteral 0.9.

    I do not think that there are breaking changes, therefore it should be sufficient just to add a compat entry for 0.9.

    opened by lungben 1
  • Be more similar to Test.@test interface

    Be more similar to [email protected] interface

    Specifically, and most hard to work around, getting local variables to work:

    let
      i = 10
      @test i == 10
    end
    

    It does, but I'd like to have errors and testsets too (or rather just have the notebook a bit cleaned up)

    opened by dralletje 0
Releases(v0.2.2)
Owner
Pluto
🎈 Simple reactive notebooks for Julia — https://github.com/fonsp/Pluto.jl
Pluto
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022