Mask-invariant Face Recognition through Template-level Knowledge Distillation

Overview

Mask-invariant Face Recognition through Template-level Knowledge Distillation

This is the official repository of "Mask-invariant Face Recognition through Template-level Knowledge Distillation" accepted at IEEE International Conference on Automatic Face and Gesture Recognition 2021 (FG2021).

Research Paper at:

Table of Contents

Abstract

The emergence of the global COVID-19 pandemic poses new challenges for biometrics. Not only are contactless biometric identification options becoming more important, but face recognition has also recently been confronted with the frequent wearing of masks. These masks affect the performance of previous face recognition systems, as they hide important identity information. In this paper, we propose a mask-invariant face recognition solution (MaskInv) that utilizes template-level knowledge distillation within a training paradigm that aims at producing embeddings of masked faces that are similar to those of non-masked faces of the same identities. In addition to the distilled knowledge, the student network benefits from additional guidance by margin-based identity classification loss, ElasticFace, using masked and non-masked faces. In a step-wise ablation study on two real masked face databases and five mainstream databases with synthetic masks, we prove the rationalization of our MaskInv approach. Our proposed solution outperforms previous state-of-the-art (SOTA) academic solutions in the recent MFRC-21 challenge in both scenarios, masked vs masked and masked vs nonmasked, and also outperforms the previous solution on the MFR2 dataset. Furthermore, we demonstrate that the proposed model can still perform well on unmasked faces with only a minor loss in verification performance.

Data

Datasets

The MFR2 dataset can be downloaded here.

The preprocessed benchmarks (LFW, CALFW, CPLFW, AgeDB-30, CFP-FP) can be downloaded here as "MS1M-ArcFace (85K ids/5.8M images)".

The MFRC-21 dataset is not available for the public.

Masks

The mask template used to create the synthetic masked data for training and evaluation is attached. The colors for the synthetic masks on the benchmark can be downloaded here, they have to be placed in the /eval/ directory.

Models

All used pre-trained models are available:

Our models can be downloaded here.

Citing

If you use any of the code provided in this repository or the models provided, please cite the following paper:

@misc{huber2021maskinvariant,
      title={Mask-invariant Face Recognition through Template-level Knowledge Distillation}, 
      author={Marco Huber and Fadi Boutros and Florian Kirchbuchner and Naser Damer},
      year={2021},
      eprint={2112.05646},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

This research work has been funded by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE.

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Fadi Boutros
Fadi Boutros
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022