Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

Overview

SAGCN - Official PyTorch Implementation

| Paper | Project Page

This is the official implementation of the paper "Steganographer detection via a similarity accumulation graph convolutional network". NOTE: We are refactoring this project to the best practice of engineering.

Abstract

Steganographer detection aims to identify guilty users who conceal secret information in a number of images for the purpose of covert communication in social networks. Existing steganographer detection methods focus on designing discriminative features but do not explore relationship between image features or effectively represent users based on features. In these methods, each image is recognized as an equivalent, and each user is regarded as the distribution of all images shared by the corresponding user. However, the nuances of guilty users and innocent users are difficult to recognize with this flattened method. In this paper, the steganographer detection task is formulated as a multiple-instance learning problem in which each user is considered to be a bag, and the shared images are multiple instances in the bag. Specifically, we propose a similarity accumulation graph convolutional network to represent each user as a complete weighted graph, in which each node corresponds to features extracted from an image and the weight of an edge is the similarity between each pair of images. The constructed unit in the network can take advantage of the relationships between instances so that common patterns of positive instances can be enhanced via similarity accumulations. Instead of operating on a fixed original graph, we propose a novel strategy for reconstructing and pooling graphs based on node features to iteratively operate multiple convolutions. This strategy can effectively address oversmoothing problems that render nodes indistinguishable although they share different instance-level labels. Compared with the state-of-the-art method and other representative graph-based models, the proposed framework demonstrates its effectiveness and reliability ability across image domains, even in the context of large-scale social media scenarios. Moreover, the experimental results also indicate that the proposed network can be generalized to other multiple-instance learning problems.

Roadmap

After many rounds of revision, the project code implementation is not elegant. Thus, in order to help the readers to reproduce the experimental results of this paper quickly, we will open-source our study following this roadmap:

  • refactor and open-source all the model files, training files, and test files of the proposed method for comparison experiments.
  • refactor and open-source the visualization experiments.
  • refactor and open-source the APIs for the real-world steganographer detection in an out-of-box fashion.

Quick Start

Dataset and Pre-processing

We use the MDNNSD model to extract a 320-D feature from each image and save the extracted features in different .mat files. You should check ./data/train and ./data/test to confirm you have the dataset ready before experiments. For example, cover.mat and suniward_01.mat should be placed in the ./data/train and ./data/test folders.

Then, we provide a dataset tool to distribute image features and construct innocent users and guilty users as described in the paper, for example:

python preprocess_dataset.py --target suniward_01_100 --guilty_file suniward_01 --is_train --is_test --is_reset --mixin_num 0

Train the proposed SAGCN

To obtain our designed model for detecting steganographers, we provide an entry file with flexible command-line options, arguments to train the proposed SAGCN on the desired dataset under various experiment settings, for example:

python main.py --epochs 80 --batch_size 100 --model_name SAGCN --folder_name suniward_01_100 --parameters_name=sagcn_suniward_01_100 --mode train --learning_rate 1e-2 --gpu 1
python main.py --epochs 80 --batch_size 100 --model_name SAGCN --folder_name suniward_01_100 --parameters_name=sagcn_suniward_01_100 --mode train --learning_rate 1e-2 --gpu 1

Test the proposed SAGCN

For reproducing the reported experimental results, you just need to pass command-line options of the corresponding experimental setting, such as:

python main.py --batch_size 100 --model_name SAGCN --parameters_name sagcn_suniward_01_100 --folder_name suniward_01_100 --mode test --gpu 1

Visualize

If you set summary to True during training, you can use tensorboard to visualize the training process.

tensorboard --logdir logs --host 0.0.0.0 --port 8088

Requirement

  • Hardware: GPUs Tesla V100-PCIE (our version)
  • Software:
    • h5py==2.7.1 (our version)
    • scipy==1.1.0 (our version)
    • tqdm==4.25.0 (our version)
    • numpy==1.14.3 (our version)
    • torch==0.4.1 (our version)

Contact

If you have any questions, please feel free to open an issue.

Contribution

We thank all the people who already contributed to this project:

  • Zhi ZHANG
  • Mingjie ZHENG
  • Shenghua ZHONG
  • Yan LIU

Citation Information

If you find the project useful, please cite:

@article{zhang2021steganographer,
  title={Steganographer detection via a similarity accumulation graph convolutional network},
  author={Zhang, Zhi and Zheng, Mingjie and Zhong, Sheng-hua and Liu, Yan},
  journal={Neural Networks},
  volume={136},
  pages={97--111},
  year={2021}
}
Owner
ZHANG Zhi
日知其所亡,月无忘其所能
ZHANG Zhi
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022