Deep generative models of 3D grids for structure-based drug discovery

Overview

What is liGAN?

liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grids. It is based on libmolgrid and the gnina fork of caffe.

VAE paper - 2 minute talk

CVAE paper - 15 minute talk

Dependencies

  • numpy
  • pandas
  • scikit-image
  • openbabel
  • rdkit
  • molgrid
  • torch
  • protobuf
  • gnina version of caffe

Usage

You can use the scripts download_data.sh and download_weights.sh to download the test data and weights that were evaluated in the above papers.

The script generate.py is used to generate atomic density grids and molecular structures from a trained generative model.

Its basic usage can be seen in the scripts generate_vae.sh:

LIG_FILE=$1 # e.g. data/molport/0/102906000_8.sdf

python3 generate.py \
  --data_model_file models/data_48_0.5_molport.model \
  --gen_model_file models/vae.model \
  --gen_weights_file weights/gen_e_0.1_1_disc_x_10_0.molportFULL_rand_.0.0_gen_iter_100000.caffemodel \
  --rec_file data/molport/10gs_rec.pdb \
  --lig_file $LIG_FILE \
  --out_prefix VAE \
  --n_samples 10 \
  --fit_atoms \
  --dkoes_make_mol \
  --output_sdf \
  --output_dx \
  --gpu

And generate_cvae.sh:

REC_FILE=$1 # e.g. data/crossdock2020/PARP1_HUMAN_775_1012_0/2rd6_A_rec.pdb
LIG_FILE=$2 # e.g. data/crossdock2020/PARP1_HUMAN_775_1012_0/2rd6_A_rec_2rd6_78p_lig_tt_min.sdf

python3 generate.py \
  --data_model_file models/data_48_0.5_crossdock.model \
  --gen_model_file models/cvae.model \
  --gen_weights_file weights/lessskip_crossdocked_increased_1.lowrmsd.0_gen_iter_1500000.caffemodel \
  --rec_file $REC_FILE \
  --lig_file $LIG_FILE \
  --out_prefix CVAE \
  --n_samples 10 \
  --fit_atoms \
  --dkoes_make_mol \
  --output_sdf \
  --output_dx \
  --gpu

Both scripts can be run from the root directory of the repository.

Owner
Matt Ragoza
PhD student, Intelligent Systems Program, Pitt SCI
Matt Ragoza
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022