Code for the paper "Attention Approximates Sparse Distributed Memory"

Overview

Attention Approximates Sparse Distributed Memory - Codebase

This is all of the code used to run analyses in the paper "Attention Approximates Sparse Distributed Memory" by Trenton Bricken and Cengiz Pehlevan.

Abstract

While Attention has come to be an important mechanism in deep learning, there remains limited intuition for why it works so well. Here, we show that Transformer Attention can be closely related under certain data conditions to Kanerva's Sparse Distributed Memory (SDM), a biologically plausible associative memory model. We confirm that these conditions are satisfied in pre-trained GPT2 Transformer models. We discuss the implications of the Attention-SDM map and provide new computational and biological interpretations of Attention.

Summary of Paper

The main contribution of this paper is to show that the Sparse Distributed Memory (SDM) theory developed in 1988 for how memories are written to and read from neurons, is a very close approximation to the heuristically developed and powerful Transformer Attention. This connection is compelling because SDM has biologically plausibility with the cerebellum in particular. SDM has a number of additional desireable properties that may lead to improvements in Deep Learning including (citations and explations for these statements provided in the paper):

  • Capable of modelling both auto and heteroassociative relationships.
  • Symbolic representations enabling variable binding, learning from example, analogical reasoning, and generalization.
  • Sparsity providing computational efficiency and robustness to noise.
  • Biological plausibility with striking similiarities to the cerebellum. Similarities that warrant further investigation are also present in cortical columns, the hippocampus, dorsal cochlear nucleus, and olfactory system in humans, insects and potentially even cephalopods.
  • Psychological plausibility including explaining the robust, distributed nature of memories, speed of recognition, tip of the tongue phenomena, Small World network between concepts.
  • Additional strong similarities to the Neural Turing Machine (NTM), and Differentiable Neural Computer (DNC).

Description of the Codebase

Jupyter Notebooks:

Used to run all code.

  • Softmax_Circle_Approx.ipynb - Computes the approximate circle intersection and shows how it relates to the softmax via the log linear regression to fit Beta in the exponential. This is the core contribution of our paper.

  • Exp_Approx_Circle_Intersect.ipynb - Implements and tests how well the exponential upper and lower bounds analytically derived for the circle intersection perform.

  • SDM_Experiments.ipynb - Calls on functions in Implementations_Associative_Memory.py and Data_Processing_Associative_Memory.py to test all of the Associative Memory algorithms considered: Neuron Based SDM; Pattern Based SDM with Infinite Neurons; Pattern Based SDM with Finite Neurons; Hopfield Network; Binary SDM with Attention with learnt Beta; SDM Attention with learnt Beta; Transformer Attention.

  • LearnProjections.ipynb - Also calls on functions in Implementations_Associative_Memory.py to learn a projection matrix for the MNIST and CIFAR datasets before testing how it affects the performance of continuous vectors that use three different weightings: Binary SDM Circle Intersection, Continuous SDM Hypersphere Cap Intersection, Attention Softmax with a Beta fitted to Binary SDM.

  • Neuron_Address_Distribution.ipynb - Computes the probability that at least one neuron is within a given Hamming distance of a random query.

  • SDM_Critical_Distances.ipynb - Plots the Critical Distances under different parameter assumptions.

  • HugFace/Transformer_Empirical_Analysis.ipynb - Computes the Betas used in the trained GPT models with the decided upon text inputs. This jupyter notebook is in this directory that implements a customized version of the Hugging Face transformer repo: https://github.com/huggingface/transformers. It was necessary to modify the code base in order to get out the query matrices before their dot product with the keys in the softmax operation.

  • Parse_KeyQ_Norm_Betas.ipynb - Parses and plots the KeyQuery Norm learnt Beta values.

  • Compute_Difference_In_Circle_Intersects.ipynb - Computing how the circle intersection implementations are different from those presented in the SDM book. Also comparing the Circle Intersection equation derived in the Appendix to that of the book. Finally, comparing the associated variance equation from the book with that of Jaeckel's Alterative SDM Design (presented and outlined in the paper Appendix).

  • Optimal_d.ipynb - Computing the Signal to Noise Ratio and Memory Capacity Optimal Hamming Distances.

  • Miscellaneous.ipynb - the name says it all. Different experiments and functions not used in the paper.

Python Scripts:

Supporting functions for the Jupyter Notebooks.

  • SDM_Circ_Inter_Funcs.py - Contains lots of heavily used functions including implementing the circle intersection function and fitting the log linear regression to the circle intersection.

  • Implementations_Associative_Memory.py - Handles the algorithmic implementations of all Associative Memory models considered.

  • utils_LearningProjections.py - Called by LearnProjections.ipynb, leverages functions from Implementations_Associative_Memory.py but wraps them in Pytorch backpropagation to learn the projection matrix.

  • Data_Processing_Associative_Memory.py - Applies random perturbations to continuous and binary data inputs to then evaluate the autoassociative convergence properties of various algorithms.

Folders:

  • figures/ - contains all of the figures used in the paper and additional ones. Aside from those generated by HugFace/Transformer_Empirical_Analysis.ipynb that are located in the next bullet point:

  • HugFace/GPT2Outputs/ - contains all of the GPT2 Transformer analysis figures. Generated by HugFace/Transformer_Empirical_Analysis.ipynb.

  • trained_weights/ - trained weights of the projection matrix for each dataset, Hamming radius and random initalization.

Data:

  • KeyQuery_Norm_Learnt_Betas.txt - Learnt Beta values from the Trained Transformer models of the paper: A. Henry, Prudhvi Raj Dachapally, S. Pawar, and Yuxuan Chen. Query-key normalization for transformers. In EMNLP, 2020.

  • HugFace/text_inputs.txt - line separated text inputs put into GPT2 to infer it's effective Betas. This text is used by HugFace/Transformer_Empirical_Analysis.ipynb.

Dependencies

Tested with Python 3.7.5 (should work with Python 3.5 and higher).

To run HugFace/Transformer_Empirical_Analysis.ipynb you will need to install Pytorch 1.5.1 (using CUDA or not depending on if you have a GPU) https://pytorch.org/get-started/locally/

If using Pip out of the box cd to this directory then use: pip3 install -r SDM/requirements.txt

If using Conda then ensure pip is installed with conda and then run the same above code.

Do not install (or uninstall if it is already installed) HuggingFace/transformers. As you will need to run the customized version implemented in the HugFace/ directory. cd to this directory then run: pip install -e . In trying to run this there may be a couple additional random dependencies it expects like tdqm but these are straightforward to install when and if prompted.

Acknowledgements:

Thanks to the open source community, friends and advisors for making this research possible. This includes but is not limited to:

Dr. Gabriel Kreiman, Alex Cuozzo, Miles Turpin, Dr. Pentti Kanerva, Joe Choo-Choy, Dr. Beren Millidge, Jacob Zavatone-Veth, Blake Bordelon, Nathan Rollins, Alan Amin, Max Farrens, David Rein, Sam Eure, Grace Bricken, and Davis Brown for providing invaluable inspiration, discussions and feedback. Special thanks to Miles Turpin for help working with the Transformer model experiments. We would also like to thank the open source software contributors that helped make this research possible, including but not limited to: Numpy, Pandas, Scipy, Matplotlib, PyTorch, HuggingFace, and Anaconda.

Codebase Author:

License:

This project is licensed under the MIT License - see the LICENSE.md file for details

Owner
Trenton Bricken
PhD student in Systems, Synthetic and Quantitative Biology @harvard.
Trenton Bricken
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022