ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Related tags

Deep LearningColBERT
Overview

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api.

ColBERT

ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds.

Figure 1: ColBERT's late interaction, efficiently scoring the fine-grained similarity between a queries and a passage.

As Figure 1 illustrates, ColBERT relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings (shown above in blue). Then at search time, it embeds every query into another matrix (shown in green) and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators.

These rich interactions allow ColBERT to surpass the quality of single-vector representation models, while scaling efficiently to large corpora. You can read more in our papers:


Installation

ColBERT (currently: v0.2.0) requires Python 3.7+ and Pytorch 1.6+ and uses the HuggingFace Transformers library.

We strongly recommend creating a conda environment using:

conda env create -f conda_env.yml
conda activate colbert-v0.2

If you face any problems, please open a new issue and we'll help you promptly!

Overview

Using ColBERT on a dataset typically involves the following steps.

Step 0: Preprocess your collection. At its simplest, ColBERT works with tab-separated (TSV) files: a file (e.g., collection.tsv) will contain all passages and another (e.g., queries.tsv) will contain a set of queries for searching the collection.

Step 1: Train a ColBERT model. You can train your own ColBERT model and validate performance on a suitable development set.

Step 2: Index your collection. Once you're happy with your ColBERT model, you need to index your collection to permit fast retrieval. This step encodes all passages into matrices, stores them on disk, and builds data structures for efficient search.

Step 3: Search the collection with your queries. Given your model and index, you can issue queries over the collection to retrieve the top-k passages for each query.

Below, we illustrate these steps via an example run on the MS MARCO Passage Ranking task.

Data

This repository works directly with a simple tab-separated file format to store queries, passages, and top-k ranked lists.

  • Queries: each line is qid \t query text.
  • Collection: each line is pid \t passage text.
  • Top-k Ranking: each line is qid \t pid \t rank.

This works directly with the data format of the MS MARCO Passage Ranking dataset. You will need the training triples (triples.train.small.tar.gz), the official top-1000 ranked lists for the dev set queries (top1000.dev), and the dev set relevant passages (qrels.dev.small.tsv). For indexing the full collection, you will also need the list of passages (collection.tar.gz).

Training

Training requires a list of <query, positive passage, negative passage> tab-separated triples.

You can supply full-text triples, where each line is query text \t positive passage text \t negative passage text. Alternatively, you can supply the query and passage IDs as a JSONL file [qid, pid+, pid-] per line, in which case you should specify --collection path/to/collection.tsv and --queries path/to/queries.train.tsv.

CUDA_VISIBLE_DEVICES="0,1,2,3" \
python -m torch.distributed.launch --nproc_per_node=4 -m \
colbert.train --amp --doc_maxlen 180 --mask-punctuation --bsize 32 --accum 1 \
--triples /path/to/MSMARCO/triples.train.small.tsv \
--root /root/to/experiments/ --experiment MSMARCO-psg --similarity l2 --run msmarco.psg.l2

You can use one or more GPUs by modifying CUDA_VISIBLE_DEVICES and --nproc_per_node.

Validation

Before indexing into ColBERT, you can compare a few checkpoints by re-ranking a top-k set of documents per query. This will use ColBERT on-the-fly: it will compute document representations during query evaluation.

This script requires the top-k list per query, provided as a tab-separated file whose every line contains a tuple queryID \t passageID \t rank, where rank is {1, 2, 3, ...} for each query. The script also accepts the format of MS MARCO's top1000.dev and top1000.eval and you can optionally supply relevance judgements (qrels) for evaluation. This is a tab-separated file whose every line has a quadruple <query ID, 0, passage ID, 1>, like qrels.dev.small.tsv.

Example command:

python -m colbert.test --amp --doc_maxlen 180 --mask-punctuation \
--collection /path/to/MSMARCO/collection.tsv \
--queries /path/to/MSMARCO/queries.dev.small.tsv \
--topk /path/to/MSMARCO/top1000.dev  \
--checkpoint /root/to/experiments/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn \
--root /root/to/experiments/ --experiment MSMARCO-psg  [--qrels path/to/qrels.dev.small.tsv]

Indexing

For fast retrieval, indexing precomputes the ColBERT representations of passages.

Example command:

CUDA_VISIBLE_DEVICES="0,1,2,3" OMP_NUM_THREADS=6 \
python -m torch.distributed.launch --nproc_per_node=4 -m \
colbert.index --amp --doc_maxlen 180 --mask-punctuation --bsize 256 \
--checkpoint /root/to/experiments/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn \
--collection /path/to/MSMARCO/collection.tsv \
--index_root /root/to/indexes/ --index_name MSMARCO.L2.32x200k \
--root /root/to/experiments/ --experiment MSMARCO-psg

The index created here allows you to re-rank the top-k passages retrieved by another method (e.g., BM25).

We typically recommend that you use ColBERT for end-to-end retrieval, where it directly finds its top-k passages from the full collection. For this, you need FAISS indexing.

FAISS Indexing for end-to-end retrieval

For end-to-end retrieval, you should index the document representations into FAISS.

python -m colbert.index_faiss \
--index_root /root/to/indexes/ --index_name MSMARCO.L2.32x200k \
--partitions 32768 --sample 0.3 \
--root /root/to/experiments/ --experiment MSMARCO-psg

Retrieval

In the simplest case, you want to retrieve from the full collection:

python -m colbert.retrieve \
--amp --doc_maxlen 180 --mask-punctuation --bsize 256 \
--queries /path/to/MSMARCO/queries.dev.small.tsv \
--nprobe 32 --partitions 32768 --faiss_depth 1024 \
--index_root /root/to/indexes/ --index_name MSMARCO.L2.32x200k \
--checkpoint /root/to/experiments/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn \
--root /root/to/experiments/ --experiment MSMARCO-psg

You may also want to re-rank a top-k set that you've retrieved before with ColBERT or with another model. For this, use colbert.rerank similarly and additionally pass --topk.

If you have a large set of queries (or want to reduce memory usage), use batch-mode retrieval and/or re-ranking. This can be done by passing --batch --retrieve_only to colbert.retrieve and passing --batch --log-scores to colbert.rerank alongside --topk with the unordered.tsv output of this retrieval run.

Some use cases (e.g., building a user-facing search engines) require more control over retrieval. For those, you typically don't want to use the command line for retrieval. Instead, you want to import our retrieval API from Python and directly work with that (e.g., to build a simple REST API). Instructions for this are coming soon, but you will just need to adapt/modify the retrieval loop in colbert/ranking/retrieval.py#L33.

Releases

  • v0.2.0: Sep 2020
  • v0.1.0: June 2020
Owner
Stanford Future Data Systems
We are a CS research group at Stanford building data-intensive systems
Stanford Future Data Systems
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023