ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Related tags

Deep Learningimix
Overview

Introduction

PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning].

@inproceedings{lee2021imix,
  title={i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning},
  author={Lee, Kibok and Zhu, Yian and Sohn, Kihyuk and Li, Chun-Liang and Shin, Jinwoo and Lee, Honglak},
  booktitle={ICLR},
  year={2021}
}

Dependencies

  • python 3.7.4
  • numpy 1.17.2
  • pytorch 1.4.0
  • torchvision 0.5.0
  • cudatoolkit 10.1
  • librosa 0.8.0 for speech_commands
  • PIL 6.2.0 for GaussianBlur

Data

  • CIFAR-10/100 will automatically be downloaded.
  • For ImageNet, please refer to the [PyTorch ImageNet example]. The folder structure should be like data/imagenet/train/n01440764/
  • For speech commands, run bash speech_commands/download_speech_commands_dataset.sh.
  • For tabular datasets, download [covtype.data.gz] and [HIGGS.csv.gz], and place them in data/. They are processed when first loaded.

Running scripts

Please refer to [run.sh].

Plug-in example

For those who want to apply our method in their own code, we provide a minimal example based on [MoCo]:

# mixup: somewhere in main_moco.py
def mixup(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample([input.shape[0]]).to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    lam_expanded = lam.view([-1] + [1]*(input.dim()-1))
    output = lam_expanded * input + (1. - lam_expanded) * input[randind]
    return output, randind, lam

# cutmix: somewhere in main_moco.py
def cutmix(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample().to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    (bbx1, bby1, bbx2, bby2), lam = rand_bbox(input.shape[-2:], lam)
    output = input.clone()
    output[..., bbx1:bbx2, bby1:bby2] = output[randind][..., bbx1:bbx2, bby1:bby2]
    return output, randind, lam

def rand_bbox(size, lam):
    W, H = size
    cut_rat = (1. - lam).sqrt()
    cut_w = (W * cut_rat).to(torch.long)
    cut_h = (H * cut_rat).to(torch.long)

    cx = torch.zeros_like(cut_w, dtype=cut_w.dtype).random_(0, W)
    cy = torch.zeros_like(cut_h, dtype=cut_h.dtype).random_(0, H)

    bbx1 = (cx - cut_w // 2).clamp(0, W)
    bby1 = (cy - cut_h // 2).clamp(0, H)
    bbx2 = (cx + cut_w // 2).clamp(0, W)
    bby2 = (cy + cut_h // 2).clamp(0, H)

    new_lam = 1. - (bbx2 - bbx1).to(lam.dtype) * (bby2 - bby1).to(lam.dtype) / (W * H)

    return (bbx1, bby1, bbx2, bby2), new_lam

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L193
criterion = nn.CrossEntropyLoss(reduction='none').cuda(args.gpu)

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L302-L303
images[0], target_aux, lam = mixup(images[0], alpha=1.)
# images[0], target_aux, lam = cutmix(images[0], alpha=1.)
target = torch.arange(images[0].shape[0], dtype=torch.long).cuda()
output, _ = model(im_q=images[0], im_k=images[1])
loss = lam * criterion(output, target) + (1. - lam) * criterion(output, target_aux)

# https://github.com/facebookresearch/moco/blob/master/moco/builder.py#L142-L149
contrast = torch.cat([k, self.queue.clone().detach().t()], dim=0)
logits = torch.mm(q, contrast.t())

Note

Owner
Kibok Lee
Kibok Lee
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022