Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

Related tags

Deep LearningMG-GAN
Overview

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction

This repository contains the code for the paper

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction
Patrick Dendorfer*, Sven Elflein*, Laura Leal-Taixé (* equal contribution)
International Conference on Computer Vision (ICCV), 2021

Motivation

The distribution over future trajectories of pedestrians is often multi-modal and does not have connected support (a).

We found that single generator GANs introduce out-of-distribution (OOD) samples in this case due to GANs mapping the continuous latent variable z with a continuous function (b). These OOD samples might introduce unforseen behavior in real world applications, such as autonomous driving.

To resolve this problem, we propose to learn the target distribution in a piecewise manner using multiple generators, effectively preventing OOD samples (c).

Model

Our model consists of four key components: Encoding modules, Attention modules, and our novel contribution PM-Network learning a distribution over multiple Generators.


Setup

First, setup Python environment

conda create -f environment.yml -n mggan
conda activate mggan

Then, download the datasets (data.zip) from here and unzip in the root of this repository

unzip data.zip

which will create a folder ./data/datasets.

Training

Models can be trained using the script mggan/model/train.py using the following command

python mggan/models/pinet_multi_generator/train.py --name <name_of_experiment> --num_gens <number_of_generators>  --dataset <dataset_name> --epochs 50

This generates a output folder in ./logs/<name_of_experiment> with Tensorboard logs and the model checkpoints. You can use tensorboard --logdir ./logs/<name_of_experiment> to monitor the training process.

Evaluation

For evaluation of metrics (ADE, FDE, Precison, Recall) for k=1 to k=20 predictions, use

python scripts/evaluate.py --model_path <path_to_model_directory>  --output_folder <folder_to_store_result_csv>

One can use --eval-set <dataset_name> to evaluate models on other test sets than the dataset the model was trained on. This is useful to evaluate the BIWI models on the Garden of Forking Paths dataset (gofp) for which we report results in the paper.

Pre-trained models

We provide pre-trained models for MG-GAN with 2-8 generators together with the training configurations, on the BIWI datasets and Stanford Drone dataset (SDD) here.

Citation

If our work is useful to you, please consider citing

@inproceedings{dendorfer2021iccv,
  title={MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction}, 
  author={Dendorfer, Patrick and Elflein, Sven and Leal-Taixé, Laura},
  month={October}
  year={2021},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  }
You might also like...
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Code for ICCV 2021 paper
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Code for the ICCV 2021 paper
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Code release for ICCV 2021 paper
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Comments
  • request to visualizer

    request to visualizer

    Hello author! I admire your work and would like to reproduce your results. There is a small requirement here that needs to trouble you. Do you have a visual code, which has shown the effect in your paper. Thanks again for your work and contributions!

    opened by 12num 0
  • Question regarding Garden of Forking Path Dataset

    Question regarding Garden of Forking Path Dataset

    Hello,

    I see there are more scenes in the test set (ETH, Hotel, and ZARA1) than the train set (ETH) in your pre-processed dataset of GOFP. Could you kindly elaborate on why it is that?

    Thanks, Sourav Das

    opened by SodaCoder 0
  • Question about ETH&UCY Dataset

    Question about ETH&UCY Dataset

    Hi, I notice that trajectories in some datasets are not consistent with provided in Social GAN. May I ask how do you preprocess your data? It will be helpful to conduct my experiments in a fair environment. Thanks!

    opened by HRHLALALA 1
  • Reproducible MG-GAN code for the FPD dataset

    Reproducible MG-GAN code for the FPD dataset

    Hello Patrick, Sven,

    This is Sourav Das, a 1st year Ph.D. student at the University of Padova, Italy.

    This Github repository has the reproducible implementation for the datasets: ETH, Hotel, Social_Stanford_Synthetic, Stanford, Univ, Zara1, Zara2, and GOFP.

    I would like to reproduce the results on FPD datasets also. Could you kindly share with me the code with support for the FPD dataset?

    Here is my Github: https://github.com/SodaCoder

    Thanks in advance,

    opened by SodaCoder 1
Releases(1.0)
Owner
Sven
Studying Computer Science at Technical University of Munich. Interested in Machine Learning Research.
Sven
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022