Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Related tags

Deep Learningpidinet
Overview

Pixel Difference Convolution

This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo Su*, Wenzhe Liu*, Zitong Yu, Dewen Hu, Qing Liao, Qi Tian, Matti Pietikäinen and Li Liu** (* Authors have equal contributions, ** Corresponding author). [arXiv]

The writing style of this code is based on Dynamic Group Convolution.

Running environment

Training: Pytorch 1.9 with cuda 10.1 and cudnn 7.5 in an Ubuntu 18.04 system
Evaluation: Matlab 2019a

Ealier versions may also work~ :)

Dataset

We use the links in RCF Repository. The augmented BSDS500, PASCAL VOC, and NYUD datasets can be downloaded with:

wget http://mftp.mmcheng.net/liuyun/rcf/data/HED-BSDS.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/PASCAL.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/NYUD.tar.gz

To create BSDS dataset, please follow:

  1. create a folder /path/to/BSDS500,
  2. extract HED-BSDS.tar.gz to /path/to/BSDS500/HED-BSDS,
  3. extract PASCAL.tar.gz to /path/to/BSDS500/PASCAL,
  4. if you want to evaluate on BSDS500 val set, the val images can be downloaded from this link, please extract it to /path/to/BSDS500/HED-BSDS/val,
  5. cp the *.lst files in data/BSDS500/HED-BSDS to /path/to/BSDS500/HED-BSDS/, cp the *.lst files in data/BSDS500 to /path/to/BSDS500/.

To create NYUD dataset, please follow:

  1. create a folder /path/to/NYUD,
  2. extract NYUD.tar.gz to /path/to/NYUD,
  3. cp the *.lst files in data/NYUD to /path/to/NYUD/.

Training, and Generating edge maps

Here we provide the scripts for training the models appeared in the paper. For example, we refer to the PiDiNet model in Table 5 in the paper as table5_pidinet.

table5_pidinet

# train, the checkpoints will be save in /path/to/table5_pidinet/save_models/ during training
python main.py --model pidinet --config carv4 --sa --dil --resume --iter-size 24 -j 4 --gpu 0 --epochs 20 --lr 0.005 --lr-type multistep --lr-steps 10-16 --wd 1e-4 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS

# generating edge maps using the original model
python main.py --model pidinet --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.tar

# generating edge maps using the converted model, it should output the same results just like using the original model
# the process will convert pidinet to vanilla cnn, using the saved checkpoint
python main.py --model pidinet_converted --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.tar --evaluate-converted

# test FPS on GPU
python throughput.py --model pidinet_converted --config carv4 --sa --dil -j 1 --gpu 0 --datadir /path/to/BSDS500 --dataset BSDS

It is similar for other models, please see detailed scripts in scripts.sh.

The performance of some of the models are listed below (click the items to download the checkpoints and training logs). FPS metrics are tested on a NVIDIA RTX 2080 Ti, showing slightly faster than that recorded in the paper (you probably get different FPS records in different runs, but they will not vary too much):

Model ODS OIS FPS Training logs
table5_baseline 0.798 0.816 101 log
table5_pidinet 0.807 0.823 96 log, running log
table5_pidinet-l 0.800 0.815 135 log
table5_pidinet-small 0.798 0.814 161 log
table5_pidinet-small-l 0.793 0.809 225 log
table5_pidinet-tiny 0.789 0.806 182 log
table5_pidinet-tiny-l 0.787 0.804 253 log
table6_pidinet 0.733 0.747 66 log, running_log
table7_pidinet 0.818 0.824 17 log, running_log

Evaluation

The matlab code used for evaluation in our experiments can be downloaded in matlab code for evaluation.

Possible steps:

  1. extract the downloaded file to /path/to/edge_eval_matlab,
  2. change the first few lines (path settings) in eval_bsds.m, eval_nyud.m, eval_multicue.m for evaluating the three datasets respectively,
  3. in a terminal, open Matlab like
matlab -nosplash -nodisplay -nodesktop

# after entering the Matlab environment, 
>>> eval_bsds
  1. you could change the number of works in parpool in /path/to/edge_eval_matlab/toolbox.badacost.public/matlab/fevalDistr.m in line 100. The default value is 16.

For evaluating NYUD, following RCF, we increase the localization tolerance from 0.0075 to 0.011. The Matlab code is based on the following links:

PR curves

Please follow plot-edge-pr-curves, files for plotting pr curves of PiDiNet are provided in pidinet_pr_curves.

Generating edge maps for your own images

python main.py --model pidinet_converted --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/savedir --datadir /path/to/custom_images --dataset Custom --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.tar --evaluate-converted

The results of our model look like this. The top image is the messy office table, the bottom image is the peaceful Saimaa lake in southeast of Finland.
Owner
Alex
A researcher in Oulu, Finland. Working on model compression and acceleration on Computer Vision.
Alex
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022