Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Overview

Panoramic BlitzNet

Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Introduction

This repository contains an original implementation of the paper: 'What’s in my Room? Object Recognition on Indoor Panoramic Images' by Julia Guerrero-Viu, Clara Fernandez-Labrador, Cédric Demonceaux and José J. Guerrero. More info can be found in our project page

Our implementation is based on the previous work of Dvornik et al. BlitzNet which code can be found in their webpage

Use Instructions

We recommend the use of a virtual enviroment for the use of this project. (e.g. anaconda)

$ conda new -n envname python=3.8.5 # replace envname with your prefered name

Install Requirements

1. This code has been compiled and tested using:

  • python 3.8.5
  • cuda 10.1
  • cuDNN 7.6
  • TensorFlow 2.3

You are free to try different configurations but we do not ensure it had been tested.

2. Install python requirements:

(envname)$ pip install -r requirements.txt

Download Dataset

SUN360: download

Copy the folder 'dataset' to the folder where you have the repository files.

Download Model

download

Download the folder 'Checkpoints' which includes the model weights and copy it to the folder where you have the repository files.

Test run

Ensure the folders 'dataset' and 'Checkpoints' are in the same folder than the python files.

To run our demo please run:

(envname)$ python3 test.py PanoBlitznet # Runs the test examples and saves results in 'Results' folder

Training and evaluation

If you want to train the model changing some parameters and evaluate the results follow the next steps:

1. Create a TFDS from SUN360:

Do this ONLY if it is the first time using this repository.

Ensure the folder 'dataset' is in the same folder than the python files.

Change the line 86 in sun360.py file with your path to the 'dataset' folder.

(envname)$ cd /path/to/project/folder
(envname)$ tfds build sun360.py # Creates a TFDS (Tensorflow Datasets) from SUN360

2. Train a model:

To train a model change the parameters you want in the config.py file. You are free to try different configurations but we do not ensure it had been tested.

Usage: training_loop.py 
    
    
      [--restore_ckpt]

Options:
	-h --help  Show this screen.
	--restore_ckpt  Restore weights from previous training to continue with the training.

    
   
(envname)$ python3 training_loop.py Example 10

If you want to load a model to train from it (or continue a training) run:

(envname)$ python3 training_loop.py Example 10 --restore_ckpt

Ensure to change in training_loop.py file how the learning rate changes during training to continue your training in a properly way.

3. Evaluate a model:

Loads a saved model and evaluates it.

(envname)$ python3 evaluation.py Example # Calculates mAP, mIoU, Precision and Recall and saves results in 'Results' folder

Contact

License

This software is under GNU General Public License Version 3 (GPLv3), please see GNU License

For commercial purposes, please contact the authors.

Disclaimer

This site and the code provided here are under active development. Even though we try to only release working high quality code, this version might still contain some issues. Please use it with caution.

Owner
Alejandro de Nova Guerrero
Alejandro de Nova Guerrero
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022