MacroTools provides a library of tools for working with Julia code and expressions.

Overview

MacroTools.jl

Build Status

MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system and code-walking tools that let you do deep transformations of code in a few lines. See the docs for more info.

Suggestions, issues and pull requsts are welcome.

Installation

]add MacroTools
Comments
  • Fixes 165, Fixes 177.

    Fixes 165, Fixes 177.

    A partial rewrite of splitarg and combinearg to fix https://github.com/FluxML/MacroTools.jl/issues/165 and https://github.com/FluxML/MacroTools.jl/issues/177.

    The big change here is that arg_type can be nothing if no type is declared for an argument. I know that this is a change to the interface, but I also see no other way to fix the problem. While we are changing the interface, we may want to consider handling literal nothing as an argument default through the base Some and something interface. (discussed in https://github.com/FluxML/MacroTools.jl/issues/35).

    opened by willow-ahrens 23
  • Option to deterministically generate unique ids instead of randomized animal names

    Option to deterministically generate unique ids instead of randomized animal names

    There are a couple of problems with the current animal name scheme used in alias_gensyms:

    1. There are only about 220 animal names in animals.txt. If you have more than 220 gensyms the following line in the current alias_gensyms function is going to error out:

    [email protected]!(syms, x, pop!(left))

    (left is a copy of the animals symbol list)

    1. Currently, the animal names list is randomized when the package is initialized. While working on ONNX.jl we were finding that given the same inputs we would get different code generated due to this randomization. This makes it very difficult for us to debug as we made changes to ONNX.jl and wanted to compare code generated from a prior version on the same inputs.

    This patch generates a simple unique id in the form of "sym_id_$counter" where the counter value is incremented on each gensym encountered.

    I would have preferred replacing all of the "#" characters in the gensym with blanks, however that did not work for me even though I tried the same scheme in the REPL on a gensym string and it did work (see the comment I added in alias_gensyms - maybe someone could get that working?)

    opened by philtomson 13
  • Support function return types in longdef/shortdef

    Support function return types in longdef/shortdef

    I also have a function that uses MacroTools to parse any function definition and return (name, arg, kwargs, body, return_type). Would that be accepted?

    opened by cstjean 13
  • more faithfully reconstruct original function in combinedef

    more faithfully reconstruct original function in combinedef

    Previously combinedef would put an ::Any return type annotation on any function it reconstructed that didn't have one originally, and also wrap the function body in one extra begin block. These both seem completely superfluous except amazingly when combined they trigger the bug I reported here: https://github.com/JuliaLang/julia/issues/29326.

    This PR gets rid of those things and more faithfully reconstructs the original function.

    I also switched to returning the expression via @q which would allow whatever macro is calling combinedef to insert the desired line numbers in there.

    opened by marius311 9
  • move shuffling of animals to be done on demand instead of during initialization

    move shuffling of animals to be done on demand instead of during initialization

    This package is heavily used throughout the ecosystem so optimizing its load time is quite important. The compilation time of the shuffle! call in the __init__ function adds quite a bit of overhead, so I moved this to be done the first time the variable is actually used instead.

    Without this PR:

    julia> @time using MacroTools
      0.067275 seconds (142.56 k allocations: 9.640 MiB, 61.33% compilation time)
    

    With this PR:

    julia> @time using MacroTools
      0.024947 seconds (28.79 k allocations: 3.159 MiB, 22.04% compilation time)
    

    It also removed quite a bit of "noise" when profiling other packages load time that happens to depend on this pacakge recursively.

    opened by KristofferC 8
  • code quality improvements from JET analysis

    code quality improvements from JET analysis

    I ran JET analysis on this package, and fixed some true positive errors.

    run JET on MacroTools

    julia> using JET
    julia> report_file("src/MacroTools.jl"; analyze_from_definitions = true, annotate_types = true)
    

    Before this PR

    ═════ 11 possible errors found ═════
    ┌ @ src/match/match.jl:27 Base.getproperty(Base.getproperty(MacroTools.Base, :match::Symbol)::typeof(match)(r"^@?(.*?)_+(_str)?$", MacroTools.string(s::Symbol)::String)::Union{Nothing, RegexMatch}, :captures::Symbol)
    │┌ @ Base.jl:33 Base.getfield(x::Nothing, f::Symbol)
    ││ type Nothing has no field captures
    │└──────────────
    ┌ @ src/match/types.jl:20 MacroTools.map(MacroTools.totype, ts::Vector{Symbol})
    │┌ @ abstractarray.jl:2301 Base.collect_similar(A::Vector{Symbol}, Base.Generator(f::typeof(MacroTools.totype), A::Vector{Symbol})::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})
    ││┌ @ array.jl:620 Base._collect(cont::Vector{Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, Base.IteratorEltype(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.EltypeUnknown, Base.IteratorSize(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.HasShape{1})
    │││┌ @ array.jl:710 Base.collect_to_with_first!(Base._similar_for(c::Vector{Symbol}, Base.typeof(v1::Union{Expr, Symbol})::Union{Type{Expr}, Type{Symbol}}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, isz::Base.HasShape{1})::Union{Vector{Expr}, Vector{Symbol}}, v1::Union{Expr, Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, st::Int64)
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Symbol}, v1::Expr, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Symbol}, x::Expr)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Symbol}, x::Expr)
    │││││└────────────────
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Expr}, v1::Symbol, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Expr}, x::Symbol)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Expr}, x::Symbol)
    │││││└────────────────
    ┌ @ src/utils.jl:21 Base.collect(Base.Generator(#11::MacroTools.var"#11#12", MacroTools.map(MacroTools.esc, xs::Tuple)::Any)::Base.Generator{_A, MacroTools.var"#11#12"} where _A)
    │┌ @ array.jl:697 Base.collect_to_with_first!(Base._array_for(Base.typeof(v1::Expr)::Type{Expr}, Base.getproperty(itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, :iter::Symbol)::Any, isz::Any)::Any, v1::Expr, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    ││┌ @ array.jl:721 Base.grow_to!(dest::Any, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    │││┌ @ dict.jl:153 Base.indexed_iterate(Core.getfield(Base.indexed_iterate(y::Tuple{Expr, Any}, 1)::Tuple{Expr, Int64}, 1)::Expr, 1)
    ││││┌ @ tuple.jl:89 Base.iterate(I::Expr)
    │││││ no matching method found for call signature: Base.iterate(I::Expr)
    ││││└───────────────
    ┌ @ src/utils.jl:423 MacroTools.rebuilddef(MacroTools.striplines(dict::Dict)::Dict)
    │ variable MacroTools.rebuilddef is not defined: MacroTools.rebuilddef(MacroTools.striplines(dict::Dict)::Dict)
    └────────────────────
    ┌ @ src/utils.jl:455 Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, default::Any)::Tuple{Bool, Any}...)
    │ no matching method found for call signature: Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, default::Any)::Tuple{Bool, Any}...)
    └────────────────────
    ┌ @ src/utils.jl:457 Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg_expr2::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, MacroTools.nothing)::Tuple{Bool, Nothing}...)
    │ no matching method found for call signature: Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg_expr2::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, MacroTools.nothing)::Tuple{Bool, Nothing}...)
    └────────────────────
    ┌ @ src/structdef.jl:13 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/structdef.jl:21 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/structdef.jl:29 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/examples/destruct.jl:24 MacroTools.error("Can't destructure fields with default values")
    │┌ @ error.jl:33 error(::String)
    ││ may throw: Base.throw($(Expr(:invoke, MethodInstance for ErrorException(::String), :(Base.ErrorException), Core.Argument(2)))::ErrorException)
    │└───────────────
    

    After this PR: only the false positives ramain (Julia's inference or JET itself should be improved)

    ═════ 4 possible errors found ═════
    ┌ @ src/match/types.jl:20 MacroTools.map(MacroTools.totype, ts::Vector{Symbol})
    │┌ @ abstractarray.jl:2301 Base.collect_similar(A::Vector{Symbol}, Base.Generator(f::typeof(MacroTools.totype), A::Vector{Symbol})::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})
    ││┌ @ array.jl:620 Base._collect(cont::Vector{Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, Base.IteratorEltype(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.EltypeUnknown, Base.IteratorSize(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.HasShape{1})
    │││┌ @ array.jl:710 Base.collect_to_with_first!(Base._similar_for(c::Vector{Symbol}, Base.typeof(v1::Union{Expr, Symbol})::Union{Type{Expr}, Type{Symbol}}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, isz::Base.HasShape{1})::Union{Vector{Expr}, Vector{Symbol}}, v1::Union{Expr, Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, st::Int64)
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Symbol}, v1::Expr, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Symbol}, x::Expr)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Symbol}, x::Expr)
    │││││└────────────────
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Expr}, v1::Symbol, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Expr}, x::Symbol)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Expr}, x::Symbol)
    │││││└────────────────
    ┌ @ src/utils.jl:21 Base.collect(Base.Generator(#11::MacroTools.var"#11#12", MacroTools.map(MacroTools.esc, xs::Tuple)::Any)::Base.Generator{_A, MacroTools.var"#11#12"} where _A)
    │┌ @ array.jl:697 Base.collect_to_with_first!(Base._array_for(Base.typeof(v1::Expr)::Type{Expr}, Base.getproperty(itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, :iter::Symbol)::Any, isz::Any)::Any, v1::Expr, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    ││┌ @ array.jl:721 Base.grow_to!(dest::Any, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    │││┌ @ dict.jl:153 Base.indexed_iterate(Core.getfield(Base.indexed_iterate(y::Tuple{Expr, Any}, 1)::Tuple{Expr, Int64}, 1)::Expr, 1)
    ││││┌ @ tuple.jl:89 Base.iterate(I::Expr)
    │││││ no matching method found for call signature: Base.iterate(I::Expr)
    ││││└───────────────
    ┌ @ src/examples/destruct.jl:24 MacroTools.error("Can't destructure fields with default values")
    │┌ @ error.jl:33 error(::String)
    ││ may throw: Base.throw($(Expr(:invoke, MethodInstance for ErrorException(::String), :(Base.ErrorException), Core.Argument(2)))::ErrorException)
    │└───────────────
    
    opened by aviatesk 8
  • improve code quality and type instabilities

    improve code quality and type instabilities

    I used JET and fixed some actual errors and type instabilities. (this PR is the final output of my demo at our workshop)

    /cc @pfitzseb Could you review this PR, please ? :)

    opened by aviatesk 7
  • splitarg incompatible with kwargs on 1.7

    splitarg incompatible with kwargs on 1.7

    Therefore, it is no longer safe to do funcdef[:kwargs] = map(arg->combinearg(splitarg(arg)...), funcdef[:kwargs], since this would transform a definition like f(;kwargs...) to f(;kwargs::Any...) which is no longer allowed in Julia 1.7. I don't know why that's no longer allowed, but from the REPL:

    ERROR: syntax: "x::Any" is not a valid function argument name around REPL[3]:1
    Stacktrace:
     [1] top-level scope
       @ REPL[3]:1
    
    opened by willow-ahrens 6
  • make

    make "slurp" pattern configurable

    This PR setups IGNORED_SLURP_PATTERNS::Set{Symbol}, which allows users to configure patterns that should not be recognized as "slurp"s.

    The motivation here is that there can be double-scores in variable names and so we sometimes may want them not to be recognized as "slurp" pattern.

    For example, let's consider when we want to specify a pattern that only matches __init__() expression:

    julia> @capture(:(__init__()), __init__()), @capture(:(foo()), __init__()) # you may want the latter case not to match
    (true, true)
    

    With this PR, we can configure IGNORED_SLURP_PATTERNS and achieve what we want:

    julia> push!(MacroTools.IGNORED_SLURP_PATTERNS, :__init__); # configure `IGNORED_SLURP_PATTERNS`
    
    julia> @capture(:(__init__()), __init__()), @capture(:(foo()), __init__()) # now `__init__` isn't recognized as slurp pattern
    (true, false)
    

    IGNORED_SLURP_PATTERNS is initialized as an empty set, and thus this change doesn't break any existing behavior by default.

    opened by aviatesk 6
  • don't use exceptions to implement `ismatch` and `trymatch`

    don't use exceptions to implement `ismatch` and `trymatch`

    This is causing https://github.com/JuliaLang/julia/issues/28221. At least for APIs that return a result instead of exposing MatchError, the package should use return values instead of exceptions.

    opened by JeffBezanson 5
  • bizzare match failure for macros in type assertions

    bizzare match failure for macros in type assertions

    MacroTools can't match macros when they appear in the type assertions in function calls. This seems like a crazy issue, but a key macro in my package depended on this functionality and now something has changed with the latest julia build and things fail. Any ideas as to why this match failure would happen?

                   _
       _       _ _(_)_     |  A fresh approach to technical computing
      (_)     | (_) (_)    |  Documentation: https://docs.julialang.org
       _ _   _| |_  __ _   |  Type "?" for help, "]?" for Pkg help.
      | | | | | | |/ _` |  |
      | | |_| | | | (_| |  |  Version 0.7.0-DEV.5246 (2018-05-29 13:27 UTC)
     _/ |\__'_|_|_|\__'_|  |  Commit 082be9a (8 days old master)
    |__/                   |  x86_64-apple-darwin17.5.0
    
    (v0.7) pkg> up MacroTools
      Updating registry at `~/.julia/registries/Uncurated`
      Updating git-repo `https://github.com/JuliaRegistries/Uncurated.git`
     Resolving package versions...
      Updating `~/.julia/environments/v0.7/Project.toml`
     [no changes]
      Updating `~/.julia/environments/v0.7/Manifest.toml`
     [no changes]
    
    julia> using MacroTools
    
    julia> x = :(foo(x::@bar(qux))).args[2].args[2]
    :(#= REPL[3]:1 =# @bar qux)
    
    julia> :(@bar(qux))
    :(#= REPL[4]:1 =# @bar qux)
    
    julia> x.head
    :macrocall
    
    julia> :(@bar(qux)).head
    :macrocall
    
    julia> x.args
    3-element Array{Any,1}:
     Symbol("@bar")
     :(#= REPL[3]:1 =#)
     :qux
    
    julia> :(@bar(qux)).args
    3-element Array{Any,1}:
     Symbol("@bar")
     :(#= REPL[8]:1 =#)
     :qux
    
    julia> @capture(x, @bar(qux))
    false
    
    julia> @capture(:(@bar(qux)), @bar(qux))
    true
    

    EDIT: It appears that this has something to do with line number nodes getting passed as arguments to macros. I rolled a custom solution for myself, but I'll dig into this sometime when I have more time. I don't think this has anything to do with the type assertions at all now.

    opened by willow-ahrens 5
  • Splitdef errors on anonymous function with a single varargs argument

    Splitdef errors on anonymous function with a single varargs argument

    splitdef fails with an assertion on an anonymous function with a single varargs argument:

    julia> splitdef(Meta.parse(" (args...) -> 0 "))
    ERROR: ArgumentError: Not a function definition: :(args...->begin
              #= none:1 =#
              0
          end)
    Stacktrace:
     [1] splitdef(fdef::Expr)
       @ MacroTools ~/.julia/packages/MacroTools/PP9IQ/src/utils.jl:317
    

    Either adding another argument or using the long form of the definition is fine:

    julia> splitdef(Meta.parse(" (x, args...) -> 0 "))
    Dict{Symbol, Any} with 4 entries:
      :args        => Any[:x, :(args...)]
      :body        => quote…
      :kwargs      => Any[]
      :whereparams => ()
    
    julia> splitdef(Meta.parse(" function f(args...) 0 end "))
    Dict{Symbol, Any} with 5 entries:
      :name        => :f
      :args        => Any[:(args...)]
      :kwargs      => Any[]
      :body        => quote…
      :whereparams => ()
    
    opened by julbinb 1
  • @capture union problem

    @capture union problem

    Similar to what was noted in https://github.com/FluxML/MacroTools.jl/issues/40#issuecomment-357466077,

    julia> @capture :(myvariable = 2) (lhs_Symbol = rhs_)
    true
    
    julia> @capture :(myvariable = 2) (lhs_Symbol = rhs_) | someotherpat
    false
    
    julia> @capture :(myvariable = 2) (lhs_ = rhs_) | someotherpat
    true
    

    The second match should be true as well.

    opened by cstjean 0
  • add dict interface splitargdef and combineargdef

    add dict interface splitargdef and combineargdef

    This PR adds new methods splitargdef and combineargdef (in addition to existing splitarg and combinearg) that use dictionaries as an interface. The dict interface more completely expresses corner cases, as described in https://github.com/FluxML/MacroTools.jl/pull/178. In particular, it provides robust solutions for literal nothing argument defaults and avoids typeasserts when no type is given for an argument.

    opened by willow-ahrens 5
  • `isdef()` seems to return true in any case

    `isdef()` seems to return true in any case

    help?> MacroTools.isdef
      Test for function definition expressions.
    
    julia> MacroTools.isdef(:(f() = 3))
    true
    
    julia> MacroTools.isdef(:(f()))
    true
    
    julia> MacroTools.isdef(:ix)
    true
    
    
    opened by omlins 2
  • rmlines would be more useful if it worked recursively

    rmlines would be more useful if it worked recursively

    rmlines would be more useful it it worked recursively.

    rmlines(Meta.parse("""
    begin
       begin
          begin
    end
    end
    end"""))
    quote
        begin
            #= none:3 =#
            begin
                #= none:4 =#
            end
        end
    end
    

    Yes, one could use postwalk, but I don't think one should have to.

    Also, why isn't postwalk exported?

    At the very least, the documentation should manage expectations by saying that it doesn'[t work recursively and suggesting the use of postwalk.

    opened by MarkNahabedian 1
Releases(v0.5.10)
Owner
FluxML
The Elegant Machine Learning Stack
FluxML
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022