Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Overview

Myo Keylogging

This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Gazzari, Annemarie Mattmann, Max Maass and Matthias Hollick in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume 5, Issue 4, 2021.

We include the software used for recording the dataset (record folder) and the software for training and running the neural networks (ml folder) as well as analyzing the results (analysis folder). The scripts folder provides some helper scripts for automating batches of hyperparameter optimization, model fitting, analyses and more. The results folder includes a pickled version of the predictions of our models, on which analyses can be run, e.g. to reproduce the paper results.

Installation

To install the project, first clone the repository and change directory into the fresh clone:

git clone https://github.com/seemoo-lab/myo-keylogging.git
cd myo-keylogging

You can use a python virtual environment (or any other virtual environment of your choice):

mkvirtualenv myo --system-site-packages
workon myo

To make sure you have the newest software versions you can run an upgrade:

pip install --upgrade pip setuptools

To install the requirements run:

pip install -r requirements.txt

Finally, import the training and test data into the project. The top level folder should include a folder train-data with all the records for training the models and a folder test-data with all the records for testing the models.

wget https://zenodo.org/record/5594651/files/myo-keylogging-dataset.zip
unzip myo-keylogging-dataset.zip

Using the record library, you can add you can extend this dataset.

Rerun of Results

To reproduce our results from the provided predictions of our models, go to the top level directory and run:

./scripts/create_results.sh

This will recreate all performance value files and plots in the subfolders of the results folder as used in the paper.

Run the following to list the fastest and slowest typists in order to determine their class imbalance in the results/train-data-skew.csv and the results/test-data-skew.csv files:

python -m analysis exp_key_data

To recreate the provided predictions and class skew files, execute the following from the top level directory:

./scripts/create_models.sh
./scripts/create_predictions.sh
./scripts/create_class_skew_files.sh

This will fit the models with the current choice of hyperparameters and run each model on the test dataset to create the required predictions for analysis. Additionally, the class skew files will be recreated.

To run the hyperparameter optimization either run the run_shallow_hpo.sh script or, alternatively, the slurm_run_shallow_hpo.sh script when on a SLURM cluster.

sbatch scripts/slurm_run_shallow_hpo.sh
./scripts/run_shallow_hpo.sh

Afterwards you can use the merge_shallow_hpo_runs.py script to combine the results for easier evaluation of the hyperparameters.

Fit Models

In order to fit and analyze your own models, go to the top level directory and run any of:

python -m ml crnn
python -m ml resnet
python -m ml resnet11
python -m ml wavenet

This will fit the respective model with the default parameters and in binary mode for keystroke detection. In order to fit multiclass models for keystroke identification, use the encoding parameter, e.g.:

python -m ml crnn --encoding "multiclass"

In order to test specific sensors, ignore the others (note that quaternions are ignored by default), e.g. to use only EMG on a CRNN model, use:

python -m ml crnn --ignore "quat" "acc" "gyro"

To run a hyperparameter optimization, run e.g.:

python -m ml crnn --func shallow_hpo --step 5

To gain more information on possible parameters, run e.g.:

python -m ml crnn --help

Some parameters for the neural networks are fixed in the code.

Analyze Models

In order to analyze your models, run apply_models to create the predictions as pickled files. On these you can run further analyses found in the analysis folder.

To run apply_models on a binary model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding binary --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To run a multiclass model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding multiclass --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To chain a binary and multiclass model, do e.g.:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding chain --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS> --tolerance 10

Further parameters interesting for analyses may be a filter on the users with the parameter (--users known or --users unknown) or on the data (--data known or --data unknown) to include only users (not) in the training data or include only data typed by all or no other user respectively.

For more information, run:

python -m analysis apply_models --help

To later recreate model performance results and plots, run:

python -m analysis apply_models --encoding <ENCODING> --load_results results/<PATH_TO_PKL> --save_path results/<PATH_TO_PKL> --save_only

with the appropriate encoding of the model used to create the pickled results.

To run further analyses on the generated predictions, create or choose your analysis from the analysis folder and run:

python -m analysis <ANALYSIS_NAME>

Refer to the help for further information:

python -m analysis <ANALYSIS_NAME> --help

Record Data

In order to record your own data(set), switch to the record folder. To record sensor data with our recording software, you will need one to two Myo armbands connected to your computer. Then, you can start a training data recording, e.g.:

python tasks.py -s 42 -l german record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_DE

for a German recording with seed 42, a touch typist and a TADA68 German physical keyboard layout or

python tasks.py -s 42 -l english record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_US

for an English recording with seed 42, a hybrid typist and a TADA68 English physical keyboard layout.

In order to start a test data recording, simply run the passwords.py instead of the tasks.py.

After recording training data, please execute the following script to complete the meta data:

python update_text_meta.py -p ../train-data/

After recording test data, please execute the following two scripts to complete the meta data:

python update_pw_meta.py -p ../test-data/
python update_cuts.py -p ../test-data/

For further information, check:

python tasks.py --help
python passwords.py --help

Note that the recording software includes text extracts as outlined in the acknowledgments below.

Links

Acknowledgments

This work includes the following external materials to be found in the record folder:

  1. Various texts from Wikipedia available under the CC-BY-SA 3.0 license.
  2. The EFF's New Wordlists for Random Passphrases available under the CC-BY 3.0 license.
  3. An extract of the Top 1000 most common passwords by Daniel Miessler, Jason Haddix, and g0tmi1k available under the MIT license.

License

This software is licensed under the GPLv3 license, please also refer to the LICENSE file.

Owner
Secure Mobile Networking Lab
Secure Mobile Networking Lab
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022