Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

Overview

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge

Introduction

SentiLARE is a sentiment-aware pre-trained language model enhanced by linguistic knowledge. You can read our paper for more details. This project is a PyTorch implementation of our work.

Dependencies

  • Python 3
  • NumPy
  • Scikit-learn
  • PyTorch >= 1.3.0
  • PyTorch-Transformers (Huggingface) 1.2.0
  • TensorboardX
  • Sentence Transformers 0.2.6 (Optional, used for linguistic knowledge acquisition during pre-training and fine-tuning)
  • NLTK (Optional, used for linguistic knowledge acquisition during pre-training and fine-tuning)

Quick Start for Fine-tuning

Datasets of Downstream Tasks

Our experiments contain sentence-level sentiment classification (e.g. SST / MR / IMDB / Yelp-2 / Yelp-5) and aspect-level sentiment analysis (e.g. Lap14 / Res14 / Res16). You can download the pre-processed datasets (Google Drive / Tsinghua Cloud) of the downstream tasks. The detailed description of the data formats is attached to the datasets.

Fine-tuning

To quickly conduct the fine-tuning experiments, you can directly download the checkpoint (Google Drive / Tsinghua Cloud) of our pre-trained model. We show the example of fine-tuning SentiLARE on SST as follows:

cd finetune
CUDA_VISIBLE_DEVICES=0,1,2 python run_sent_sentilr_roberta.py \
          --data_dir data/sent/sst \
          --model_type roberta \
          --model_name_or_path pretrain_model/ \
          --task_name sst \
          --do_train \
          --do_eval \
          --max_seq_length 256 \
          --per_gpu_train_batch_size 4 \
          --learning_rate 2e-5 \
          --num_train_epochs 3 \
          --output_dir sent_finetune/sst \
          --logging_steps 100 \
          --save_steps 100 \
          --warmup_steps 100 \
          --eval_all_checkpoints \
          --overwrite_output_dir

Note that data_dir is set to the directory of pre-processed SST dataset, and model_name_or_path is set to the directory of the pre-trained model checkpoint. output_dir is the directory to save the fine-tuning checkpoints. You can refer to the fine-tuning codes to get the description of other hyper-parameters.

More details about fine-tuning SentiLARE on other datasets can be found in finetune/README.MD.

POS Tagging and Polarity Acquisition for Downstream Tasks

During pre-processing, we tokenize the original datasets with NLTK, tag the sentences with Stanford Log-Linear Part-of-Speech Tagger, and obtain the sentiment polarity with Sentence-BERT.

Pre-training

If you want to conduct pre-training by yourself instead of directly using the checkpoint we provide, this part may help you pre-process the pre-training dataset and run the pre-training scripts.

Dataset

We use Yelp Dataset Challenge 2019 as our pre-training dataset. According to the Term of Use of Yelp dataset, you should download Yelp dataset on your own.

POS Tagging and Polarity Acquisition for Pre-training Dataset

Similar to fine-tuning, we also conduct part-of-speech tagging and sentiment polarity acquisition on the pre-training dataset. Note that since the pre-training dataset is quite large, the pre-processing procedure may take a long time because we need to use Sentence-BERT to obtain the representation vectors of all the sentences in the pre-training dataset.

Pre-training

Refer to pretrain/README.MD for more implementation details about pre-training.

Citation

@inproceedings{ke-etal-2020-sentilare,
    title = "{S}enti{LARE}: Sentiment-Aware Language Representation Learning with Linguistic Knowledge",
    author = "Ke, Pei  and Ji, Haozhe  and Liu, Siyang  and Zhu, Xiaoyan  and Huang, Minlie",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    pages = "6975--6988",
}

Please kindly cite our paper if this paper and the codes are helpful.

Thanks

Many thanks to the GitHub repositories of Transformers and BERT-PT. Part of our codes are modified based on their codes.

Owner
Conversational AI groups from Tsinghua University
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021