Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

Overview

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge

Introduction

SentiLARE is a sentiment-aware pre-trained language model enhanced by linguistic knowledge. You can read our paper for more details. This project is a PyTorch implementation of our work.

Dependencies

  • Python 3
  • NumPy
  • Scikit-learn
  • PyTorch >= 1.3.0
  • PyTorch-Transformers (Huggingface) 1.2.0
  • TensorboardX
  • Sentence Transformers 0.2.6 (Optional, used for linguistic knowledge acquisition during pre-training and fine-tuning)
  • NLTK (Optional, used for linguistic knowledge acquisition during pre-training and fine-tuning)

Quick Start for Fine-tuning

Datasets of Downstream Tasks

Our experiments contain sentence-level sentiment classification (e.g. SST / MR / IMDB / Yelp-2 / Yelp-5) and aspect-level sentiment analysis (e.g. Lap14 / Res14 / Res16). You can download the pre-processed datasets (Google Drive / Tsinghua Cloud) of the downstream tasks. The detailed description of the data formats is attached to the datasets.

Fine-tuning

To quickly conduct the fine-tuning experiments, you can directly download the checkpoint (Google Drive / Tsinghua Cloud) of our pre-trained model. We show the example of fine-tuning SentiLARE on SST as follows:

cd finetune
CUDA_VISIBLE_DEVICES=0,1,2 python run_sent_sentilr_roberta.py \
          --data_dir data/sent/sst \
          --model_type roberta \
          --model_name_or_path pretrain_model/ \
          --task_name sst \
          --do_train \
          --do_eval \
          --max_seq_length 256 \
          --per_gpu_train_batch_size 4 \
          --learning_rate 2e-5 \
          --num_train_epochs 3 \
          --output_dir sent_finetune/sst \
          --logging_steps 100 \
          --save_steps 100 \
          --warmup_steps 100 \
          --eval_all_checkpoints \
          --overwrite_output_dir

Note that data_dir is set to the directory of pre-processed SST dataset, and model_name_or_path is set to the directory of the pre-trained model checkpoint. output_dir is the directory to save the fine-tuning checkpoints. You can refer to the fine-tuning codes to get the description of other hyper-parameters.

More details about fine-tuning SentiLARE on other datasets can be found in finetune/README.MD.

POS Tagging and Polarity Acquisition for Downstream Tasks

During pre-processing, we tokenize the original datasets with NLTK, tag the sentences with Stanford Log-Linear Part-of-Speech Tagger, and obtain the sentiment polarity with Sentence-BERT.

Pre-training

If you want to conduct pre-training by yourself instead of directly using the checkpoint we provide, this part may help you pre-process the pre-training dataset and run the pre-training scripts.

Dataset

We use Yelp Dataset Challenge 2019 as our pre-training dataset. According to the Term of Use of Yelp dataset, you should download Yelp dataset on your own.

POS Tagging and Polarity Acquisition for Pre-training Dataset

Similar to fine-tuning, we also conduct part-of-speech tagging and sentiment polarity acquisition on the pre-training dataset. Note that since the pre-training dataset is quite large, the pre-processing procedure may take a long time because we need to use Sentence-BERT to obtain the representation vectors of all the sentences in the pre-training dataset.

Pre-training

Refer to pretrain/README.MD for more implementation details about pre-training.

Citation

@inproceedings{ke-etal-2020-sentilare,
    title = "{S}enti{LARE}: Sentiment-Aware Language Representation Learning with Linguistic Knowledge",
    author = "Ke, Pei  and Ji, Haozhe  and Liu, Siyang  and Zhu, Xiaoyan  and Huang, Minlie",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    pages = "6975--6988",
}

Please kindly cite our paper if this paper and the codes are helpful.

Thanks

Many thanks to the GitHub repositories of Transformers and BERT-PT. Part of our codes are modified based on their codes.

Owner
Conversational AI groups from Tsinghua University
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022