Exemplo de implementação do padrão circuit breaker em python

Overview

fast-circuit-breaker

Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael Nygard

Nesse exemplo vamos executar o serviço de oferta (fria) que se comunica com o serviço de oferta do parceiro (quente). Depois vamos provocar uma indisponibilidade no serviço de oferta do parceiro, retornando uma oferta fria (fallback) do serviço de oferta.

Fluxo de oferta!

Veremos que em certo momento o serviço de oferta deixará de se comunicar com o serviço de oferta do parceiro, abrindo o circuito (open), após um determinado tempo o serviço de oferta continuará tentando restabelecer a comunicação com serviço de oferta do parceiro, circuito meio-aberto (half-open).

Quando a comunicação entre os serviços for restabelecida, o circuito será fechado (close).

Observe abaixo o fluxo de mudança de estado do padrão circuit breaker.

Estados do circuit breaker!

Instalação

Crie um ambiente virtual.

python3 -m venv venv

Ative o ambiente virtual.

source venv/bin/activate

Instale as dependências do projeto.

pip install -r requirements.txt

Uso

Execute o serviço de oferta do parceiro, responsável por retornar uma oferta quente (hot).

python partner_offer_service.py

Execute o serviço de oferta responsável por buscar oferta quente no serviço de oferta do parceiro.

HTTPX_LOG_LEVEL=debug python offer_service.py

Vamos testar a busca de oferta, através de uma chamada HTTP do qualquer cliente (browser, curl, httpie), o exemplo abaixo usa o httpie.

http ":8001/offer"

A resposta deve ser uma oferta quente do serviço de oferta do parceiro.

"Hot offer 24:48"

Veja nos logs do serviço de oferta, a resposta OK do serviço de oferta do parceiro.

DEBUG [2021-06-19 11:03:03] httpx._client - HTTP Request: GET http://127.0.0.1:8000/offer/hot "HTTP/1.1 200 OK"

Circuit breaker

Vamos alterar o arquivo partner_offer_service.py na linha 13 para retornar o código de erro 500 na resposta do recurso GET /offer/hot, conforme exemplo abaixo.

return Response(content=body, status_code=500)

Atenção: os serviços tem a configuração de recarregar (reload) a aplicação toda vez que um arquivo é alterado.

Vamos chamar o serviço de busca de oferta novamente.

http ":8001/offer"

A resposta agora deve ser uma oferta fria, retornada através de uma função (fallback) do serviço de oferta.

"Cold offer fallback 47:32"

Veja nos logs do serviço de oferta um erro na comunicação com o serviço de oferta do parceiro.

DEBUG [2021-06-19 20:44:27] httpx._client - HTTP Request: GET http://127.0.0.1:8000/offer/hot "HTTP/1.1 500 Internal Server Error"

Vamos verificar o estado do circuito do serviço de oferta.

http ":8001/offer/circuit"

A resposta mostra que o circuito está com o estado fechado (current_state) e 1 falha fail_counter.

{
  "current_state": "closed",
  "fail_counter": 1
}

Antes de prosseguirmos vamos analisar a configuração do circuito no arquivo circuit_breaker.py, para mais informações consulte a documentação da biblioteca pybreaker.

  1. fail_max: Quantidade máxima de falhas.
  2. reset_timeout: Limite de tempo (segundos) para redefinição do estado do circuito.
  3. state_storage: Onde o estado será armazenado (Memória, Redis, etc).
  4. listeners: Ouvintes que serão notificados em cada evento do circuito
circuit_breaker = CircuitBreaker(
    fail_max=3,
    reset_timeout=15,
    state_storage=state_storage,
    listeners=[LogListener()]
)

Vamos chamar o recurso de buscar oferta mais 3 vezes.

http ":8001/offer"

Após 3 falhas (fail_max) na comunicação com o serviço de oferta do parceiro, o circuito é aberto (open).

Vamos verificar o estado do circuito mais uma vez.

http ":8001/offer/circuit"

Na resposta o circuito está aberto (current_state) com 3 falhas fail_counter.

{
  "current_state": "open",
  "fail_counter": 3
}

Observe que no estado aberto, não há registro de log de comunicação, pois o circuito protege o serviço de oferta do parceiro de receber chamadas por um determinado período de tempo.

No estado aberto (open), há cada 15 segundos (reset_timeout) o circuito entrará no estado meio-aberto (half-open) para tentar restabelecer a comunicação com o serviço de oferta do parceiro.

Podemos acompanhar (terminal) os eventos do circuito através dos logs da classe LogListener registrada como ouvinte na instancia do circuito.

Antes do circuito invocar a função.
Quando uma invocação de função levanta uma exceção.
Quando o estado do circuito mudou (open).
Quando o estado do circuito mudou (half-open).
Quando o estado do circuito mudou (open).

Caso alteremos o código da resposta do serviço de oferta do parceiro para 200, então o circuito será fechado (close), ou caso a resposta continue com código de erro 500 o circuito continuará aberto.

Owner
James G Silva
Desenvolvedor de software, ajudo pessoas nos primeiros passos da programação.
James G Silva
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022