The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

Overview

miseval: a metric library for Medical Image Segmentation EVALuation

shield_python shield_build shield_pypi_version shield_pypi_downloads shield_license

The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure. We hope that our this will help improve evaluation quality, reproducibility, and comparability in future studies in the field of medical image segmentation.

Guideline on Evaluation Metrics for Medical Image Segmentation

  1. Use DSC as main metric for validation and performance interpretation.
  2. Use AHD for interpretation on point position sensitivity (contour) if needed.
  3. Avoid any interpretations based on high pixel accuracy scores.
  4. Provide next to DSC also IoU, Sensitivity, and Specificity for method comparability.
  5. Provide sample visualizations, comparing the annotated and predicted segmentation, for visual evaluation as well as to avoid statistical bias.
  6. Avoid cherry-picking high-scoring samples.
  7. Provide histograms or box plots showing the scoring distribution across the dataset.
  8. For multi-class problems, provide metric computations for each class individually.
  9. Avoid confirmation bias through macro-averaging classes which is pushing scores via background class inclusion.
  10. Provide access to evaluation scripts and results with journal data services or third-party services like GitHub and Zenodo for easier reproducibility.

Implemented Metrics

Metric Index in miseval Function in miseval
Dice Similarity Index "DSC", "Dice", "DiceSimilarityCoefficient" miseval.calc_DSC()
Intersection-Over-Union "IoU", "Jaccard", "IntersectionOverUnion" miseval.calc_IoU()
Sensitivity "SENS", "Sensitivity", "Recall", "TPR", "TruePositiveRate" miseval.calc_Sensitivity()
Specificity "SPEC", "Specificity", "TNR", "TrueNegativeRate" miseval.calc_Specificity()
Precision "PREC", "Precision" miseval.calc_Precision()
Accuracy "ACC", "Accuracy", "RI", "RandIndex" miseval.calc_Accuracy()
Balanced Accuracy "BACC", "BalancedAccuracy" miseval.calc_BalancedAccuracy()
Adjusted Rand Index "ARI", "AdjustedRandIndex" miseval.calc_AdjustedRandIndex()
AUC "AUC", "AUC_trapezoid" miseval.calc_AUC()
Cohen's Kappa "KAP", "Kappa", "CohensKappa" miseval.calc_Kappa()
Hausdorff Distance "HD", "HausdorffDistance" miseval.calc_SimpleHausdorffDistance()
Average Hausdorff Distance "AHD", "AverageHausdorffDistance" miseval.calc_AverageHausdorffDistance()
Volumetric Similarity "VS", "VolumetricSimilarity" miseval.calc_VolumetricSimilarity()
True Positive "TP", "TruePositive" miseval.calc_TruePositive()
False Positive "FP", "FalsePositive" miseval.calc_FalsePositive()
True Negative "TN", "TrueNegative" miseval.calc_TrueNegative()
False Negative "FN", "FalseNegative" miseval.calc_FalseNegative()

How to Use

Example

# load libraries
import numpy as np
from miseval import evaluate

# Get some ground truth / annotated segmentations
np.random.seed(1)
real_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
real_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)
# Get some predicted segmentations
np.random.seed(2)
pred_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
pred_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)

# Run binary evaluation
dice = evaluate(real_bi, pred_bi, metric="DSC")    
  # returns single np.float64 e.g. 0.75

# Run multi-class evaluation
dice_list = evaluate(real_mc, pred_mc, metric="DSC", multi_class=True,
                     n_classes=5)   
  # returns array of np.float64 e.g. [0.9, 0.2, 0.6, 0.0, 0.4]
  # for each class, one score

Core function: Evaluate()

Every metric in miseval can be called via our core function evaluate().

The miseval eavluate function can be run with different metrics as backbone.
You can pass the following options to the metric parameter:

  • String naming one of the metric labels, for example "DSC"
  • Directly passing a metric function, for example calc_DSC_Sets (from dice.py)
  • Passing a custom metric function

List of metrics : See miseval/__init__.py under section "Access Functions to Metric Functions"

The classes in a segmentation mask must be ongoing starting from 0 (integers from 0 to n_classes-1).

A segmentation mask is allowed to have either no channel axis or just 1 (e.g. 512x512x1), which contains the annotation.

Binary mode. n_classes (Integer): Number of classes. By default 2 -> Binary Output: score (Float) or scores (List of Float) The multi_class parameter defines the output of this function. If n_classes > 2, multi_class is automatically True. If multi_class == False & n_classes == 2, only a single score (float) is returned. If multi_class == True, multiple scores as a list are returned (for each class one score). """ def evaluate(truth, pred, metric, multi_class=False, n_classes=2)">
"""
Arguments:
    truth (NumPy Matrix):            Ground Truth segmentation mask.
    pred (NumPy Matrix):             Prediction segmentation mask.
    metric (String or Function):     Metric function. Either a function directly or encoded as String from miseval or a custom function.
    multi_class (Boolean):           Boolean parameter, if segmentation is a binary or multi-class problem. By default False -> Binary mode.
    n_classes (Integer):             Number of classes. By default 2 -> Binary

Output:
    score (Float) or scores (List of Float)

    The multi_class parameter defines the output of this function.
    If n_classes > 2, multi_class is automatically True.
    If multi_class == False & n_classes == 2, only a single score (float) is returned.
    If multi_class == True, multiple scores as a list are returned (for each class one score).
"""
def evaluate(truth, pred, metric, multi_class=False, n_classes=2)

Installation

  • Install miseval from PyPI (recommended):
pip install miseval
  • Alternatively: install miseval from the GitHub source:

First, clone miseval using git:

git clone https://github.com/frankkramer-lab/miseval

Then, go into the miseval folder and run the install command:

cd miseval
python setup.py install

Author

Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

How to cite / More information

Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer. (2022)
MISeval: a Metric Library for Medical Image Segmentation Evaluation.
arXiv e-print: https://arxiv.org/abs/2201.09395

@inproceedings{misevalMUELLER2022,
  title={MISeval: a Metric Library for Medical Image Segmentation Evaluation},
  author={Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer},
  year={2022}
  eprint={2201.09395},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Thank you for citing our work.

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022