Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Overview

Computational Optimal Transport for Machine Learning Reading Group

Over the last few years, optimal transport (OT) has quickly become a central topic in machine learning. OT is now routinely used in many areas of ML, ranging from the theoretical use of OT flow for controlling learning algorithms to the inference of high-dimensional cell trajectories in genomics. This reading group aims to keep participants up to date with the latest research happening in this area.

Logistics

For Winter 2022 term, meetings will be held weekly on Mondays from 14:00 to 15:00 EST via zoom (for now).

  • Zoom Link.

  • Password will be provided on slack before every meeting.

  • Meetings will be recorded by default. Recordings are available to Mila members at this link. Presenters can email [email protected] to opt out from being recorded.

  • Reading Group participates are expected to read each paper beforehand.

Schedule

Date Topic Presenters Slides
01/17/21 Introduction to Optimal Transport for Machine Learning Alex Tong
Ali Harakeh
Part 1
Part 2
01/24/21 Learning with minibatch Wasserstein : asymptotic and gradient properties Kilian Fatras --
01/31/21 -- -- --
02/7/21 -- -- --
02/14/21 -- -- --
02/21/21 -- -- --
02/28/21 -- -- --

Paper Presentation Instructions

Volunteer to Present

  • All participants are encouraged to volunteer to present at the reading group.

  • Volunteers can choose a paper from this list of suggested papers, or any other paper that is related to optimal transport in machine learning.

  • To volunteer, please send the paper title, link, and your preferred presentation date the Slack channel #volunteer-to-present or email [email protected].

Presentation Instructions

  • Presentations should be limited to 40 minutes at most. During the presentation, organizers will act as moderators and will read questions as they come up on the Zoom chat. The aim is to be done in 35-40 min to allow 15 min for general discussion.

  • Presentations should roughly adhere to the following outline:

    1. 5-10 minutes: Problem setup and position to literature.
    2. 10-15 minutes: Contributions/Novel technical points.
    3. 10-15 minutes: Weak points, open questions, and future directions.

Useful References

This is a list of useful references including code, text books, and presentations.

Code

  • POT: Python Optimal Transport: This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. This library has the most efficient exact OT solvers.
  • GeomLoss: The GeomLoss library provides efficient GPU implementations for Kernel norms, Hausdorff divergences, and Debiased Sinkhorn divergences. This library has the most scalable duel OT solvers embedded within the Sinkhorn divergence computation.

Textbooks

@article{peyre2019computational,
  title={Computational optimal transport: With applications to data science},
  author={Peyr{\'e}, Gabriel and Cuturi, Marco and others},
  journal={Foundations and Trends{\textregistered} in Machine Learning},
  volume={11},
  number={5-6},
  pages={355--607},
  year={2019},
  publisher={Now Publishers, Inc.}}

Workshops and Presentations

Organizers

Modeled after the Causal Representation Learning Reading Group .

Owner
Ali Harakeh
Postdoctoral Research Fellow @mila-iqia
Ali Harakeh
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022