HybVIO visual-inertial odometry and SLAM system

Overview

HybVIO

A visual-inertial odometry system with an optional SLAM module.

This is a research-oriented codebase, which has been published for the purposes of verifiability and reproducibility of the results in the paper:

  • Otto Seiskari, Pekka Rantalankila, Juho Kannala, Jerry Ylilammi, Esa Rahtu, and Arno Solin (2022). HybVIO: Pushing the limits of real-time visual-inertial odometry. In IEEE Winter Conference on Applications of Computer Vision (WACV).
    [arXiv pre-print] | [video]

It can also serve as a baseline in VIO and VISLAM benchmarks. The code is not intended for production use and does not represent a particularly clean or simple way of implementing the methods described in the above paper. The code contains numerous feature flags and parameters (see codegen/parameter_definitions.c) that are not used in the HybVIO but may (or may not) be relevant in other scenarios and use cases.

HybVIO EuRoC

Setup

Here are basic instructions for setting up the project, there is some more detailed help included in the later sections (e.g., for Linux).

  • Install CMake, glfw and ffmpeg, e.g., by brew install cmake glfw ffmpeg.
  • Clone this repository with the --recursive option (this will take a while)
  • Build dependencies by running cd 3rdparty/mobile-cv-suite; ./scripts/build.sh
  • Make sure you are using clang to compile the C++ sources (it's the default on Macs). If not default, like on many Linux Distros, you can control this with environment variables, e.g., CC=clang CXX=clang++ ./scripts/build.sh
  • (optional) In order to be able to use the SLAM module, run ./slam/src/download_orb_vocab.sh

Then, to build the main and test binaries, perform the standard CMake routine:

mkdir target
cd target
cmake -DBUILD_VISUALIZATIONS=ON -DUSE_SLAM=ON ..
# or if not using clang by default:
# CC=clang CXX=clang++ cmake ..
make

Now the target folder should contain the binaries main and run-tests. After making changes to code, only run make. Tests can be run with the binary run-tests.

To compile faster, pass -j argument to make, or use a program like ccache. To run faster, check CMakeLists.txt for some options.

Arch Linux

List of packages needed: blas, cblas, clang, cmake, ffmpeg, glfw, gtk3, lapack, python-numpy, python-matplotlib.

Debian

On Debian Stretch, had to install (some might be optional): clang, libc++-dev, libgtk2.0-dev, libgstreamer1.0-dev, libvtk6-dev, libavresample-dev.

Raspberry Pi/Raspbian

On Raspbian (Pi 4, 8 GiB), had to install at least: libglfw3-dev and libglfw3 (for accelerated arrays) and libglew-dev and libxkbcommon-dev (for Pangolin, still had problems). Also started off with the Debian setup above.

Benchmarking

EuroC

To run benchmarks on EuroC dataset and reproduce numbers published in https://arxiv.org/abs/2106.11857, follow the instructions in https://github.com/AaltoML/vio_benchmark/tree/main/hybvio_runner.

If you want to test the software on individual EuRoC datasets, you can follow this subset of instructions

  1. In vio_benchmark root folder, run python convert/euroc_to_benchmark.py to download and convert to data
  2. Symlink that data here: mkdir -p data && cd data && ln -s /path/to/vio_benchmark/data/benchmark .

Then you can run inividual EuRoC sequences as, e.g.,

./main -i=../data/benchmark/euroc-v1-02-medium -p -useStereo

ADVIO

  1. Download the ADVIO dataset as instructed in https://github.com/AaltoVision/ADVIO#downloading-the-data and extract all the .zip files somewhere ("/path/to/advio").
  2. Run ./scripts/convert/advio_to_generic_benchmark.sh /path/to/advio
  3. Then you can run ADVIO sequences either using their full path (like in EuRoC) or using the -j shorthand, e.g., ./main -j=2 for ADVIO-02.

The main binary

To run the algorithm on recorded data, use ./main -i=path/to/datafolder, where datafolder/ must at the very least contain a data.{jsonl|csv} and data.{mp4|mov|avi}. Such recordings can be created with

Some common arguments to main are:

  • -p: show pose visualization.
  • -c: show video output.
  • -useSlam: Enable SLAM module.
  • -useStereo: Enable stereo.
  • -s: show 3d visualization. Requires -useSlam.
  • -gpu: Enable GPU acceleration

You can get full list of command line options with ./main -help.

Key controls

These keys can be used when any of the graphical windows are focused (see commandline/command_queue.cpp for full list).

  • A to pause and toggle step mode, where a key press (e.g., SPACE) processes the next frame.
  • Q or Escape to quit
  • R to rotate camera window
  • The horizontal number keys 1,2,… toggle methods drawn in the pose visualization.

When the command line is focused, Ctrl-C aborts the program.

Copyright

Licensed under GPLv3. For different (commercial) licensing options, contact us at https://www.spectacularai.com/

A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022