Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

Overview

SuperGAT

Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision, International Conference on Learning Representations (ICLR), 2021.

Notice

The documented SuperGATConv layer with an example has been merged to the PyTorch Geometric's main branch.

This repository is based on torch==1.4.0+cu100 and torch-geometric==1.4.3, which are somewhat outdated at this point (Feb 2021). If you are using recent PyTorch/CUDA/PyG, we would recommend using the PyG's. If you want to run codes in this repository, please follow #installation.

Installation

# In SuperGAT/
bash install.sh ${CUDA, default is cu100}
  • If you have any trouble installing PyTorch Geometric, please install PyG's dependencies manually.
  • Codes are tested with python 3.7.6 and nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 image.
  • PYG's FAQ might be helpful.

Basics

  • The main train/test code is in SuperGAT/main.py.
  • If you want to see the SuperGAT layer in PyTorch Geometric MessagePassing grammar, refer to SuperGAT/layer.py.
  • If you want to see hyperparameter settings, refer to SuperGAT/args.yaml and SuperGAT/arguments.py.

Run

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES
 
...

## RESULTS SUMMARY ##
best_test_perf: 0.853 +- 0.003
best_test_perf_at_best_val: 0.851 +- 0.004
best_val_perf: 0.825 +- 0.003
test_perf_at_best_val: 0.849 +- 0.004
## RESULTS DETAILS ##
best_test_perf: [0.851, 0.853, 0.857, 0.852, 0.858, 0.852, 0.847]
best_test_perf_at_best_val: [0.851, 0.849, 0.855, 0.852, 0.858, 0.848, 0.844]
best_val_perf: [0.82, 0.824, 0.83, 0.826, 0.828, 0.824, 0.822]
test_perf_at_best_val: [0.851, 0.844, 0.853, 0.849, 0.857, 0.848, 0.844]
Time for runs (s): 173.85422565042973

The default setting is 7 runs with different random seeds. If you want to change this number, change num_total_runs in the main block of SuperGAT/main.py.

For ogbn-arxiv, use SuperGAT/main_ogb.py.

GPU Setting

There are three arguments for GPU settings (--num-gpus-total, --num-gpus-to-use, --gpu-deny-list). Default values are from the author's machine, so we recommend you modify these values from SuperGAT/args.yaml or by the command line.

  • --num-gpus-total (default 4): The total number of GPUs in your machine.
  • --num-gpus-to-use (default 1): The number of GPUs you want to use.
  • --gpu-deny-list (default: [1, 2, 3]): The ids of GPUs you want to not use.

If you have four GPUs and want to use the first (cuda:0),

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES \
    --num-gpus-total 4 \
    --gpu-deny-list 1 2 3

Model (--model-name)

Type Model name
GCN GCN
GraphSAGE SAGE
GAT GAT
SuperGATGO GAT
SuperGATDP GAT
SuperGATSD GAT
SuperGATMX GAT

Dataset (--dataset-class, --dataset-name)

Dataset class Dataset name
Planetoid Cora
Planetoid CiteSeer
Planetoid PubMed
PPI PPI
WikiCS WikiCS
WebKB4Univ WebKB4Univ
MyAmazon Photo
MyAmazon Computers
PygNodePropPredDataset ogbn-arxiv
MyCoauthor CS
MyCoauthor Physics
MyCitationFull Cora_ML
MyCitationFull CoraFull
MyCitationFull DBLP
Crocodile Crocodile
Chameleon Chameleon
Flickr Flickr

Custom Key (--custom-key)

Type Custom key (General) Custom key (for PubMed) Custom key (for ogbn-arxiv)
SuperGATGO EV1O8-ES EV1-500-ES -
SuperGATDP EV2O8-ES EV2-500-ES -
SuperGATSD EV3O8-ES EV3-500-ES EV3-ES
SuperGATMX EV13NSO8-ES EV13NSO8-500-ES EV13NS-ES

Other Hyperparameters

See SuperGAT/args.yaml or run $ python3 SuperGAT/main.py --help.

Code Base

An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022