PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

Overview

PFENet

This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Get Started

Environment

  • torch==1.4.0 (torch version >= 1.0.1.post2 should be okay to run this repo)
  • numpy==1.18.4
  • tensorboardX==1.8
  • cv2==4.2.0

Datasets and Data Preparation

Please download the following datasets:

  • PASCAL-5i is based on the PASCAL VOC 2012 and SBD where the val images should be excluded from the list of training samples.

  • COCO 2014.

This code reads data from .txt files where each line contains the paths for image and the correcponding label respectively. Image and label paths are seperated by a space. Example is as follows:

image_path_1 label_path_1
image_path_2 label_path_2
image_path_3 label_path_3
...
image_path_n label_path_n

Then update the train/val/test list paths in the config files.

[Update] We have uploaded the lists we use in our paper.

  • The train/val lists for COCO contain 82081 and 40137 images respectively. They are the default train/val splits of COCO.
  • The train/val lists for PASCAL5i contain 5953 and 1449 images respectively. The train list should be voc_sbd_merge_noduplicate.txt and the val list is the original val list of pascal voc (val.txt).
To get voc_sbd_merge_noduplicate.txt:
  • We first merge the original VOC (voc_original_train.txt) and SBD (sbd_data.txt) training data.
  • [Important] sbd_data.txt does not overlap with the PASCALVOC 2012 validation data.
  • The merged list (voc_sbd_merge.txt) is then processed by the script (duplicate_removal.py) to remove the duplicate images and labels.

Run Demo / Test with Pretrained Models

  • Please download the pretrained models.

  • We provide 8 pre-trained models: 4 ResNet-50 based models for PASCAL-5i and 4 VGG-16 based models for COCO.

  • Update the config file by speficifying the target split and path (weights) for loading the checkpoint.

  • Execute mkdir initmodel at the root directory.

  • Download the ImageNet pretrained backbones and put them into the initmodel directory.

  • Then execute the command:

    sh test.sh {*dataset*} {*model_config*}

Example: Test PFENet with ResNet50 on the split 0 of PASCAL-5i:

sh test.sh pascal split0_resnet50

Train

Execute this command at the root directory:

sh train.sh {*dataset*} {*model_config*}

Related Repositories

This project is built upon a very early version of SemSeg: https://github.com/hszhao/semseg.

Other projects in few-shot segmentation:

Many thanks to their greak work!

Citation

If you find this project useful, please consider citing:

@article{tian2020pfenet,
  title={Prior Guided Feature Enrichment Network for Few-Shot Segmentation},
  author={Tian, Zhuotao and Zhao, Hengshuang and Shu, Michelle and Yang, Zhicheng and Li, Ruiyu and Jia, Jiaya},
  journal={TPAMI},
  year={2020}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022