2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

Related tags

Deep LearningTFill
Overview

TFill

arXiv | Project

This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity Image Completion" by Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai and Dinh Phung. Given masked images, the proposed TFill model is able to generate high-fidelity plausible results on various settings.

Examples

teaser

Framework

We propose the two-stages image completion framework, where the upper content inference network (TFill-Coarse) generates semantically correct content using a transformer encoder to directly capture the global context information; the lower appearance refinement network (TFill-refined) copies global visible and generated features to holes.

teaser

Getting started

  • Clone this repo:
git clone https://github.com/lyndonzheng/TFill
cd TFill

Requirements

The original model is trained and evaluated with Pytorch v1.9.1, which cannot be visited in current PyTorch. Therefore, we create a new environment with Pytorch v1.10.0 to test the model, where the performance is the same.

A suitable conda environment named Tfill can be created and activated with:

conda env create -f environment.yaml
conda activate TFill

Runing pretrained models

Download the pre-trained models using the following links (CelebA-HQ, FFHQ, ImageNet, Plcases2 ) and put them undercheckpoints/ directory. It should have the following structure:

./checkpoints/
├── celeba
│   ├── latest_net_D.pth
│   ├── latest_net_D_Ref.pth
│   ├── latest_net_E.pth
│   ├── latest_net_G.pth
│   ├── latest_net_G_Ref.pth
│   ├── latest_net_T.pth
├── ffhq
│   ├── ...
├── ...
  • Test the model
sh ./scripts/test.sh

For different models, the users just need to modify lines 2-4, including name,img_file,mask_file. For instance, we can replace the celeba to imagenet.

The default results will be stored under the results/ folder, in which:

  • examples/: shows original and masked images;
  • img_out/: shows upsampled Coarse outputs;
  • img_ref_out/: shows the final Refined outputs.

Datasets

  • face dataset:
    • 24,183 training images and 2,824 test images from CelebA and use the algorithm of Growing GANs to get the high-resolution CelebA-HQ dataset.
    • 60,000 training images and 10,000 test images from FFHQ provided by StyleGAN.
  • natural scenery: original training and val images from Places2.
  • object original training images from ImageNet.

Traning

  • Train a model (two stage: Coarse and Refinement)
sh ./scripts/train.sh

The default setting is for the top Coarse training. The users just need to replace the coarse with refine at line 6. Then, the model can continue training for high-resolution image completion. More hyper-parameter can be in options/.

The coarse results using transformer and restrictive CNN is impressive, which provides plausible results for both foreground objects and background scene.

teaser teaser

GUI

The GUI operation is similar to our previous GUI in PIC, where steps are also the same.

Basic usage is:

sh ./scripts/ui.sh 

In gui/ui_model.py, users can modify the img_root(line 30) and the corresponding img_files(line 31) to randomly edit images from the testing dataset.

Editing Examples

  • Results (original, output) for face editing

teaser

  • Results (original, masked input, output) for nature scene editing

teaser

Next

  • Higher-resolution pluralistic image completion

License

This work is licensed under a MIT License.

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Citation

The code also uses our previous PIC. If you use this code for your research, please cite our papers.

@misc{zheng2021tfill,
      title={Bridging Global Context Interactions for High-Fidelity Image Completion},
      author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei and Phung, Dinh},
      year={2021},
      eprint={2104.00845},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{zheng2019pluralistic,
  title={Pluralistic Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1438--1447},
  year={2019}
}

@article{zheng2021pluralistic,
  title={Pluralistic Free-From Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  journal={International Journal of Computer Vision},
  pages={1--20},
  year={2021},
  publisher={Springer}
}
Owner
Chuanxia Zheng
Chuanxia Zheng
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022