Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

Overview

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation (Salesforce Research)

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on MSCOCO and Flickr30k, and visual grounding on RefCOCO+. Pre-trained and finetuned checkpoints are released.

Requirements:

  • pytorch 1.8.0
  • transformers 4.8.1
  • timm 0.4.9

Download:

Visualization:

We provide code in visualize.ipynb to visualize the important areas in an image for each word in a text. Here is an example visualization using the visual grounding checkpoint.

Pre-training on custom datasets:

  1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}.
  2. In configs/Pretrain.yaml, set the paths for the json files.
  3. Pre-train the model using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain 

Image-Text Retrieval:

  1. Download MSCOCO or Flickr30k datasets from the original websites.
  2. Download and extract the provided dataset json files.
  3. In configs/Retrieval_coco.yaml or configs/Retrieval_flickr.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Retrieval.py \
--config ./configs/Retrieval_flickr.yaml \
--output_dir output/Retrieval_flickr \
--checkpoint [Pretrained checkpoint]

VQA:

  1. Download VQA v2 dataset and Visual Genome dataset from the original websites.
  2. Download and extract the provided dataset json files.
  3. In configs/VQA.yaml, set the paths for the json files and the image paths.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env VQA.py \
--config ./configs/VQA.yaml \
--output_dir output/vqa \
--checkpoint [Pretrained checkpoint]
  1. Evaluate the result using the official evaluation server.

Visual Entailment:

  1. Download SNLI-VE dataset from the original website.
  2. Download and extract the provided dataset json files.
  3. In configs/VE.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env VE.py \
--config ./configs/VE.yaml \
--output_dir output/VE \
--checkpoint [Pretrained checkpoint]

Visual Grounding on RefCOCO+:

  1. Download MSCOCO dataset from the original website.
  2. Download and extract the provided dataset json files.
  3. In configs/Grounding.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Grounding.py \
--config ./configs/Grounding.yaml \
--output_dir output/RefCOCO \
--gradcam_mode itm \ 
--block_num 8 \
--checkpoint [Pretrained checkpoint]

NLVR2:

NLVR2 requires an additional pre-training step with text-assignment (TA) to adapt the model for image-pair inputs. In order to perform TA, first set the paths for the json training files in configs/NLVR_pretrain.yaml, then run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env Pretrain_nlvr.py \
--config ./configs/NLVR_pretrain.yaml \
--output_dir output/NLVR_pretrain \
--checkpoint [Pretrained checkpoint]

We provide the checkpoint after TA pre-training, which can be fine-tuned with the following steps.

  1. Download NLVR2 dataset from the original website.
  2. Download and extract the provided dataset json files.
  3. In configs/NLVR.yaml, set the paths for the json files and the image path.
  4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env NLVR.py \
--config ./configs/NLVR.yaml \
--output_dir output/NLVR \
--checkpoint [TA pretrained checkpoint]

Citation

If you find this code to be useful for your research, please consider citing.

@article{ALBEF,
      title={Align before Fuse: Vision and Language Representation Learning with Momentum Distillation}, 
      author={Junnan Li and Ramprasaath R. Selvaraju and Akhilesh Deepak Gotmare and Shafiq Joty and Caiming Xiong and Steven Hoi},
      year={2021},
      journal={arXiv preprint arXiv:2107.07651},
}
Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022