Non-stationary GP package written from scratch in PyTorch

Overview

NSGP-Torch

Examples

gpytorch model with skgpytorch

# Import packages
import torch
from regdata import NonStat2D
from gpytorch.kernels import RBFKernel, ScaleKernel
from skgpytorch.models import ExactGPRegressor
from skgpytorch.metrics import mean_squared_error

# Hyperparameters
n_iters = 100

# Load data
datafunc = NonStat2D(backend="torch")
X_train, y_train, X_test = map(lambda x: x.to(torch.float32), datafunc.get_data())
y_test = datafunc.f(X_test[:, 0], X_test[:, 1]).to(torch.float32)

# Define a kernel
kernel = ScaleKernel(RBFKernel(ard_num_dims=X_train.shape[1]))

# Define a model 
model = ExactGPRegressor(X_train, y_train, kernel, device='cpu')

# Train the model
model.fit(n_iters=n_iters, random_state=seed)

# Predict the distribution
pred_dist = model.predict(X_train, y_train, X_test)

# Compute RMSE and/or NLPD
mse = mean_squared_error(pred_dist, y_test, squared=False)
nlpd = neg_log_posterior_density(pred_dist, y_test)

nsgptorch model with skgpytorch

# Import packages
import torch
from regdata import NonStat2D

from nsgptorch.kernels import rbf

from skgpytorch.models import ExactNSGPRegressor
from skgpytorch.metrics import mean_squared_error

# Hyperparameters
n_iters = 100

# Load data
datafunc = NonStat2D(backend="torch")
X_train, y_train, X_test = map(lambda x: x.to(torch.float32), datafunc.get_data())
y_test = datafunc.f(X_test[:, 0], X_test[:, 1]).to(torch.float32)

# Define a kernel list for each dimension
kernel_list = [rbf, rbf]

# Define inducing points for each dimension (must be none if not applicable)
inducing_points = [None, None]

# Define a model 
model = ExactNSGPRegressor(kernel_list, input_dim=2, inducing_points, device='cpu')

# Train the model
model.fit(X_train, y_train, n_iters=n_iters, random_state=seed)

# Predict the distribution
pred_dist = model.predict(X_train, y_train, X_test)

# Compute RMSE and/or NLPD
mse = mean_squared_error(pred_dist, y_test, squared=False)
nlpd = neg_log_posterior_density(pred_dist, y_test)

Plan

  • Each kernel is 1D
  • Multiply kernels to each other

Ideas

  • Compute distance once and save it
  • Update skgpytorch to use 1 std instead of 0.1
  • Do something about mean learning of gpytorch for comparison
You might also like...
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Train a state-of-the-art yolov3 object detector from scratch!
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

In this project, we create and implement a deep learning library from scratch.
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

Create and implement a deep learning library from scratch.
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

Controlling the MicriSpotAI robot from scratch
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Releases(v0.1.2)
Owner
Zeel B Patel
Ph.D. student at sustainability lab
Zeel B Patel
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022