PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Overview

SupContrast: Supervised Contrastive Learning

This repo covers an reference implementation for the following papers in PyTorch, using CIFAR as an illustrative example:
(1) Supervised Contrastive Learning. Paper
(2) A Simple Framework for Contrastive Learning of Visual Representations. Paper

Loss Function

The loss function SupConLoss in losses.py takes features (L2 normalized) and labels as input, and return the loss. If labels is None or not passed to the it, it degenerates to SimCLR.

Usage:

from losses import SupConLoss

# define loss with a temperature `temp`
criterion = SupConLoss(temperature=temp)

# features: [bsz, n_views, f_dim]
# `n_views` is the number of crops from each image
# better be L2 normalized in f_dim dimension
features = ...
# labels: [bsz]
labels = ...

# SupContrast
loss = criterion(features, labels)
# or SimCLR
loss = criterion(features)
...

Comparison

Results on CIFAR-10:

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy 95.0
SupContrast ResNet50 Supervised Contrastive 96.0
SimCLR ResNet50 Unsupervised Contrastive 93.6

Results on CIFAR-100:

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy 75.3
SupContrast ResNet50 Supervised Contrastive 76.5
SimCLR ResNet50 Unsupervised Contrastive 70.7

Results on ImageNet (Stay tuned):

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy -
SupContrast ResNet50 Supervised Contrastive 79.1 (MoCo trick)
SimCLR ResNet50 Unsupervised Contrastive -

Running

You might use CUDA_VISIBLE_DEVICES to set proper number of GPUs, and/or switch to CIFAR100 by --dataset cifar100.
(1) Standard Cross-Entropy

python main_ce.py --batch_size 1024 \
  --learning_rate 0.8 \
  --cosine --syncBN \

(2) Supervised Contrastive Learning
Pretraining stage:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5 \
  --temp 0.1 \
  --cosine

You can also specify --syncBN but I found it not crucial for SupContrast (syncBN 95.9% v.s. BN 96.0%).
Linear evaluation stage:

python main_linear.py --batch_size 512 \
  --learning_rate 5 \
  --ckpt /path/to/model.pth

(3) SimCLR
Pretraining stage:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5 \
  --temp 0.5 \
  --cosine --syncBN \
  --method SimCLR

The --method SimCLR flag simply stops labels from being passed to SupConLoss criterion. Linear evaluation stage:

python main_linear.py --batch_size 512 \
  --learning_rate 1 \
  --ckpt /path/to/model.pth

On custom dataset:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5  \ 
  --temp 0.1 --cosine \
  --dataset path \
  --data_folder ./path \
  --mean "(0.4914, 0.4822, 0.4465)" \
  --std "(0.2675, 0.2565, 0.2761)" \
  --method SimCLR

The --data_folder must be of form ./path/label/xxx.png folowing https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder convension.

and

t-SNE Visualization

(1) Standard Cross-Entropy

(2) Supervised Contrastive Learning

(3) SimCLR

Reference

@Article{khosla2020supervised,
    title   = {Supervised Contrastive Learning},
    author  = {Prannay Khosla and Piotr Teterwak and Chen Wang and Aaron Sarna and Yonglong Tian and Phillip Isola and Aaron Maschinot and Ce Liu and Dilip Krishnan},
    journal = {arXiv preprint arXiv:2004.11362},
    year    = {2020},
}
Owner
Yonglong Tian
CS Ph.D. student in AI @ MIT
Yonglong Tian
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022