CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Overview

Diverse Structure Inpainting

ArXiv | Papar | Supplementary Material | BibTex

This repository is for the CVPR 2021 paper, "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE".

If our method is useful for your research, please consider citing.

Introduction

(Top) Input incomplete image, where the missing region is depicted in gray. (Middle) Visualization of the generated diverse structures. (Bottom) Output images of our method.

Places2 Results

Results on the Places2 validation set using the center-mask Places2 model.

CelebA-HQ Results

Results on one CelebA-HQ test image with different holes using the random-mask CelebA-HQ model.

Installation

This code was tested with TensorFlow 1.12.0 (later versions may work, excluding 2.x), CUDA 9.0, Python 3.6 and Ubuntu 16.04

Clone this repository:

git clone https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting.git

Datasets

  • CelebA-HQ: the high-resolution face images from Growing GANs. 24183 images for training, 2993 images for validation and 2824 images for testing.
  • Places2: the challenge data from 365 scene categories. 8 Million images for training, 36K images for validation and 328K images for testing.
  • ImageNet: the data from 1000 natural categories. 1 Million images for training and 50K images for validation.

Training

  • Collect the dataset. For CelebA-HQ, we collect the 1024x1024 version. For Places2 and ImageNet, we collect the original version.
  • Prepare the file list. Collect the path of each image and make a file, where each line is a path (end with a carriage return except the last line).
  • Modify checkpoints_dir, dataset, train_flist and valid_flist arguments in train_vqvae.py, train_structure_generator.py and train_texture_generator.py.
  • Modify data/data_loader.py according to the dataset. For CelebA-HQ, we resize each image to 266x266 and randomly crop a 256x256. For Places2 and ImageNet, we randomly crop a 256x256
  • Run python train_vqvae.py to train VQ-VAE.
  • Modify vqvae_network_dir argument in train_structure_generator.py and train_texture_generator.py based on the path of pre-trained VQ-VAE.
  • Modify the mask setting arguments in train_structure_generator.py and train_texture_generator.py to choose center mask or random mask.
  • Run python train_structure_generator.py to train the structure generator.
  • Run python train_texture_generator.py to train the texture generator.
  • Modify structure_generator_dir and texture_generator_dir arguments in save_full_model.py based on the paths of pre-trained structure generator and texture generator.
  • Run python save_full_model.py to save the whole model.

Testing

  • Collect the testing set. For CelebA-HQ, we resize each image to 256x256. For Places2 and ImageNet, we crop a center 256x256.
  • Collect the corresponding mask set (2D grayscale, 0 indicates the known region, 255 indicates the missing region).
  • Prepare the img file list and the mask file list as training.
  • Modify checkpoints_dir, dataset, img_flist and mask_flist arguments in test.py.
  • Download the pre-trained model and put model.ckpt.meta, model.ckpt.index, model.ckpt.data-00000-of-00001 and checkpoint under model_logs/ directory.
  • Run python test.py

Pre-trained Models

Download the pre-trained models using the following links and put them under model_logs/ directory.

The center_mask models are trained with images of 256x256 resolution with center 128x128 holes. The random_mask models are trained with random regular and irregular holes.

Inference Time

One advantage of GAN-based and VAE-based methods is their fast inference speed. We measure that Mutual Encoder-Decoder with Feature Equalizations runs at 0.2 second per image on a single NVIDIA 1080 Ti GPU for images of resolution 256×256. In contrast, our model runs at 45 seconds per image. Naively sampling our autoregressive network is the major source of computational time. Fortunately, this time can be reduced by an order of magnitude using an incremental sampling technique which caches and reuses intermediate states of the network. Consider using this technique for faster inference.

Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022