Pyramid Scene Parsing Network, CVPR2017.

Related tags

Deep LearningPSPNet
Overview

Pyramid Scene Parsing Network

by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page.

Introduction

This repository is for 'Pyramid Scene Parsing Network', which ranked 1st place in ImageNet Scene Parsing Challenge 2016. The code is modified from Caffe version of DeepLab v2 and yjxiong for evaluation. We merge the batch normalization layer named 'bn_layer' in the former one into the later one while keep the original 'batch_norm_layer' in the later one unchanged for compatibility. The difference is that 'bn_layer' contains four parameters as 'slope,bias,mean,variance' while 'batch_norm_layer' contains two parameters as 'mean,variance'. Several evaluation code is borrowed from MIT Scene Parsing.

PyTorch Version

Highly optimized PyTorch codebases available for semantic segmentation in repo: semseg, including full training and testing codes for PSPNet and PSANet.

Installation

For installation, please follow the instructions of Caffe and DeepLab v2. To enable cuDNN for GPU acceleration, cuDNN v4 is needed. If you meet error related with 'matio', please download and install matio as required in 'DeepLab v2'.

The code has been tested successfully on Ubuntu 14.04 and 12.04 with CUDA 7.0.

Usage

  1. Clone the repository:

    git clone https://github.com/hszhao/PSPNet.git
  2. Build Caffe and matcaffe:

    cd $PSPNET_ROOT
    cp Makefile.config.example Makefile.config
    vim Makefile.config
    make -j8 && make matcaffe
  3. Evaluation:

    • Evaluation code is in folder 'evaluation'.
    • Download trained models and put them in folder 'evaluation/model':
    • Modify the related paths in 'eval_all.m':
      • Mainly variables 'data_root' and 'eval_list', and your image list for evaluation should be similarity to that in folder 'evaluation/samplelist' if you use this evaluation code structure.
      • Matlab 'parfor' evaluation is used and the default GPUs are with ID [0:3]. Modify variable 'gpu_id_array' if needed. We assume that number of images can be divided by number of GPUs; if not, you can just pad your image list or switch to single GPU evaluation by set 'gpu_id_array' be length of one, and change 'parfor' to 'for' loop.
    cd evaluation
    vim eval_all.m
    • Run the evaluation scripts:
    ./run.sh
    
  4. Results:

    Prediction results will show in folder 'evaluation/mc_result' and the expected scores are:

    (single scale testing denotes as 'ss' and multiple scale testing denotes as 'ms')

    • PSPNet50 on ADE20K valset (mIoU/pAcc): 41.68/80.04 (ss) and 42.78/80.76 (ms)
    • PSPNet101 on VOC2012 testset (mIoU): 85.41 (ms)
    • PSPNet101 on cityscapes valset (mIoU/pAcc): 79.70/96.38 (ss) and 80.91/96.59 (ms)
  5. Demo video:

    Video processed by PSPNet101 on cityscapes dataset:

    Merge with colormap on side: Video1

    Alpha blending with value as 0.5: Video2

Citation

If PSPNet is useful for your research, please consider citing:

@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}

Questions

Please contact '[email protected]'

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022