Pyramid Scene Parsing Network, CVPR2017.

Related tags

Deep LearningPSPNet
Overview

Pyramid Scene Parsing Network

by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page.

Introduction

This repository is for 'Pyramid Scene Parsing Network', which ranked 1st place in ImageNet Scene Parsing Challenge 2016. The code is modified from Caffe version of DeepLab v2 and yjxiong for evaluation. We merge the batch normalization layer named 'bn_layer' in the former one into the later one while keep the original 'batch_norm_layer' in the later one unchanged for compatibility. The difference is that 'bn_layer' contains four parameters as 'slope,bias,mean,variance' while 'batch_norm_layer' contains two parameters as 'mean,variance'. Several evaluation code is borrowed from MIT Scene Parsing.

PyTorch Version

Highly optimized PyTorch codebases available for semantic segmentation in repo: semseg, including full training and testing codes for PSPNet and PSANet.

Installation

For installation, please follow the instructions of Caffe and DeepLab v2. To enable cuDNN for GPU acceleration, cuDNN v4 is needed. If you meet error related with 'matio', please download and install matio as required in 'DeepLab v2'.

The code has been tested successfully on Ubuntu 14.04 and 12.04 with CUDA 7.0.

Usage

  1. Clone the repository:

    git clone https://github.com/hszhao/PSPNet.git
  2. Build Caffe and matcaffe:

    cd $PSPNET_ROOT
    cp Makefile.config.example Makefile.config
    vim Makefile.config
    make -j8 && make matcaffe
  3. Evaluation:

    • Evaluation code is in folder 'evaluation'.
    • Download trained models and put them in folder 'evaluation/model':
    • Modify the related paths in 'eval_all.m':
      • Mainly variables 'data_root' and 'eval_list', and your image list for evaluation should be similarity to that in folder 'evaluation/samplelist' if you use this evaluation code structure.
      • Matlab 'parfor' evaluation is used and the default GPUs are with ID [0:3]. Modify variable 'gpu_id_array' if needed. We assume that number of images can be divided by number of GPUs; if not, you can just pad your image list or switch to single GPU evaluation by set 'gpu_id_array' be length of one, and change 'parfor' to 'for' loop.
    cd evaluation
    vim eval_all.m
    • Run the evaluation scripts:
    ./run.sh
    
  4. Results:

    Prediction results will show in folder 'evaluation/mc_result' and the expected scores are:

    (single scale testing denotes as 'ss' and multiple scale testing denotes as 'ms')

    • PSPNet50 on ADE20K valset (mIoU/pAcc): 41.68/80.04 (ss) and 42.78/80.76 (ms)
    • PSPNet101 on VOC2012 testset (mIoU): 85.41 (ms)
    • PSPNet101 on cityscapes valset (mIoU/pAcc): 79.70/96.38 (ss) and 80.91/96.59 (ms)
  5. Demo video:

    Video processed by PSPNet101 on cityscapes dataset:

    Merge with colormap on side: Video1

    Alpha blending with value as 0.5: Video2

Citation

If PSPNet is useful for your research, please consider citing:

@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}

Questions

Please contact '[email protected]'

This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022