Api for getting bin info and getting encrypted card details for adyen.

Overview

Bin Info And Adyen Cse Enc Python

api for getting bin info and getting encrypted card details for adyen.

GitHub stars GitHub forks Maintenance Website shields.io Ask Me Anything ! License

Installation

Local Installation

git clone http://www.github.com/r0ld3x/adyen-enc-and-bin-info
cd adyen-enc-and-bin-info
pip install -r requirements.txt
uvicorn index:app

Deploy

Usage

website.com = your heroku website name

BIN INFO:-

curl -X 'GET' \
  'https://adyen-enc-and-bin-info.herokuapp.com/bin/458578' \
  -H 'accept: application/json'

Request URL: https://adyen-enc-and-bin-info.herokuapp.com/bin/458578 Return:

{
  "bin": "458578",
  "bank": "PJSC CB EUROBANK",
  "country_iso": "UA",
  "country": "UA",
  "flag": "🇺🇦",
  "vendor": "VISA",
  "type": "DEBIT",
  "level": "CLASSIC",
  "prepaid": false
}

Return status code 200 if success else return 404 if bin not found

ADYEN ENC:-

curl -X 'POST' \
  'https://adyen-enc-and-bin-info.herokuapp.com/adyen/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "card": 5415900002240330,
  "month":7,
  "year": 2024,
  "cvv": 544,
  "adyen_key": "10001|E9DB107F38F77A23A8822CB39CDA57D971F8CA05D91C5EAA3B621F7E0CFD3E8A2C877AD39DBA8C9189EA5820EEC8483A9069BA005964200FD5FB8EFEE6F5E232EDA7915538BEB30D7F5B8FC5A12337B1E05A168760183E599571F8B43E79CCD3223C666A1FA234D2174092852D86BF751CBAAB18DD9B829B489CB43F16B3D1C70191AA12045CFFEC049030801A3891B56A43D2E6CD634E4DC403CA922D44B43498244E13BA90B6D083F5BDCF1D8D41A34B2B46D28ACBD634DD25A5037F53D8911A57D11292FB9E388C6F3A66DCB218FDC12B4EDF12F1EC130ED2423882FEF9ADAD6E27620D26CCA117BFBE2D7501BD45FDF8ED2A433A42C298A9A07B34D73CB5",
  "adyen_version": "_0_1_25"
}'

Request URL: https://adyen-enc-and-bin-info.herokuapp.com/bin/458578 Return:

{
  "card": "adyenjs_0_1_25%24pd91Sl9SF1eTx%2BZrn3b9uL8dh%2BmO6HJrNQsf%2BmQ%2F2185qXMACyys4OCwKEpeBuT9j4%2FdLCfqeVGS0gdRIZRKDLvO689pTqvFnJ1tTiXwEEYkvCJ73bSGjPzPNexi%2FWo3KmoiAPWLwHWf514AKSCb1luoztp%2BZKxpg6IuqwQR%2FtsFBkrq761AQw6TwMtMxSr%2Fzs%2Fl6WjkTOBv5GviiKKHjOCpr1Y5eMv6t%2F9cjuDIYF9AWNx4F9o4qraNeAKl%2BVjs%2Fpm9aFV16QeYWpvjO24Rpb865V6%2BgQJW%2F8I8jRbpy6wlS3Mo%2FOSUBrOZqcrw8GBn8Qtf8q74kUXRdhtywGQ%2Bgg%3D%3D%2465MDJ9nl42hYDvxIYIow9ydXvjc3HPHXZFziT8yCuulYjzpQU7QXPJcev0eP35n5k5KIRbep5zxVX6ZX3n8saXsWwwKiZhonmtPbzSmc6T262Zc%2FJmW8K6mofH7qyteM",
  "month": "adyenjs_0_1_25%24lpdea4MvYqJm4YRdufTpwKGiem3UqLHia4kJ0Q5rb6uvNyKlL9J18M9HPYH%2F3Y37lbmPIgMmGNCYoK5%2BaTj5uquRtQ1njRP55T%2F6EudhpIQMKYaw4M6gQjdIrqosVplnps%2FD%2BnmuwHJM0DWIzZC8z30ZCz4Sl6RFBL3DPj0OhvjR9MvoAUwOHqJYc%2FF9zmtTq8vA5XCYAhVisBiqX7fj547almWBEcthyYw6LEg3BYMcs4MdJahEwUa17zDDKwLlLhvkI3m0qsDc8cTFjmYtnTsxVVSEttbUe0ljQJfVrRRPtcMGHNSA5JzWGf5mMfevjciQeAXRVFolIG6283qUnw%3D%3D%24%2FjDUAJFl4B1563Tw2p76GjeHnz03b0jhFrINlCYln1v81Omn4BbnEGnp7dzD3dpx6krXpg0P%2FCq1i1lEnG4B1v1texUPMUZ9%2Bm6AT0QUI3u%2BeuJ%2BxDs%3D",
  "year": "adyenjs_0_1_25%24btmuqQyBocIYHkfdrzowdn5EeJMsrmMcbSUX6DtlOA4Gu%2BlrNunyCwsovndkApfE6A9PYTCrsqUkJ%2F4iDizHkX4Ri%2FY24UfGjUzDbUjyHzhlM3f3ktgU4afyPT3Nb%2FoMf7gbreBJApdbxxh4Zz5jh%2BOb2znoEMM0MgoQ0HTVDy7CkNEKtbYxA72g1rz32lVJHlnTE7Urd2NkQVR5j6Js9PVkNfwRLiUUnZJN6p68WcShP0nUiptciJnMiP%2F3W6LgsQ9rS9PKCxcySSqXaW2ncgXX2pRgmCLjzR6yHKClzrcc%2BUqQ6D6br7vbACXv8OO877JGZVJp9lEqJ1tyQAZBnA%3D%3D%24s%2BlEPjpYoMMZIH8%2B75KqLOkCnKvajNHrNuEq8YmvCT3nw42cRQOASN5Xd34hWbdStKXQNfOVfD0RT64ebbXLJoHSvgB5nnwwB4Ps4n2aPWXbbK8789fY8w%3D%3D",
  "cvv": "adyenjs_0_1_25%24pwHRvu2ys6zXTUaabbjtXW6kZGZhojK1WoxqSFxkO44vvRZUzaIzWwost4mRvyaTE%2F%2FXv%2FSanWXPW4vCPJzqred%2F2atsz%2FzYuNBbUT9C1%2Bga9rgX7gXKRujS5lZFf18QXlG%2BBDERhtav1CuxbsMTmyaa4QLJ9BwohZgDHvEZW%2BOThw2yQTi5GlgwauTJbiw%2BCYgzKEqk24yeUSLQGKz4yD0R2wvILFJaWzV%2B0NBnMQ8ZWEdtTRL2PY%2BHHb9uwTMBJKcdZn7qDWGT6Acxjh4HMLaI5%2FkgCch6JRsUEq63L6ulqcw6kDYGCaCZ%2BFvPmPssNFzJK6IpX%2F%2BKESxfGPBIRQ%3D%3D%246WruUcmWAV4a2Ve3SKzjTx1usXSSIf3RiZxZkdMly%2Fc97CWO5pRsMiXGUlZyB8KKctoM0iiMacnPcPN%2F%2B1Iamw8z1xriaPCdeCuGCqwGx1o%3D"
}

Return enc_card,enc_month,enc_year,enc_cvv

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

• MADE BY > Roldex

License

MIT

Owner
Roldex Stark
BEYOND YOUR LIMITS
Roldex Stark
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
LBK 20 Dec 02, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022