[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

Overview

AGIS-Net

Introduction

This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning.

paper | supplementary material

Abstract

Automatic generation of artistic glyph images is a challenging task that attracts many research interests. Previous methods either are specifically designed for shape synthesis or focus on texture transfer. In this paper, we propose a novel model, AGIS-Net, to transfer both shape and texture styles in one-stage with only a few stylized samples. To achieve this goal, we first disentangle the representations for content and style by using two encoders, ensuring the multi-content and multi-style generation. Then we utilize two collaboratively working decoders to generate the glyph shape image and its texture image simultaneously. In addition, we introduce a local texture refinement loss to further improve the quality of the synthesized textures. In this manner, our one-stage model is much more efficient and effective than other multi-stage stacked methods. We also propose a large-scale dataset with Chinese glyph images in various shape and texture styles, rendered from 35 professional-designed artistic fonts with 7,326 characters and 2,460 synthetic artistic fonts with 639 characters, to validate the effectiveness and extendability of our method. Extensive experiments on both English and Chinese artistic glyph image datasets demonstrate the superiority of our model in generating high-quality stylized glyph images against other state-of-the-art methods.

Model Architecture

Architecture

Skip Connection Local Discriminator
skip-connection local-discriminator

Some Results

comparison

comparison

across_languae

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA cuDNN
  • Python 3
  • PyTorch 0.4.0+

Get Started

Installation

  1. Install PyTorch, torchvison and dependencies from https://pytorch.org
  2. Install python libraries visdom and dominate:
    pip install visdom
    pip install dominate
  3. Clone this repo:
    git clone -b master --single-branch https://github.com/hologerry/AGIS-Net
    cd AGIS-Net
  4. Download the offical pre-trained vgg19 model: vgg19-dcbb9e9d.pth, and put it under the models/ folder

Datasets

The datasets server is down, you can download the datasets from PKU Disk, Dropbox or MEGA. Download the datasets using the following script, four datasets and the raw average font style glyph image are available.

It may take a while, please be patient

bash ./datasets/download_dataset.sh DATASET_NAME
  • base_gray_color English synthesized gradient glyph image dataset, proposed by MC-GAN.
  • base_gray_texture English artistic glyph image dataset, proposed by MC-GAN.
  • skeleton_gray_color Chinese synthesized gradient glyph image dataset by us.
  • skeleton_gray_texture Chinese artistic glyph image dataset proposed by us.
  • average_skeleton Raw Chinese avgerage font style (skeleton) glyph image dataset proposed by us.

Please refer to the data for more details about our datasets and how to prepare your own datasets.

Model Training

  • To train a model, download the training images (e.g., English artistic glyph transfer)

    bash ./datasets/download_dataset.sh base_gray_color
    bash ./datasets/download_dataset.sh base_gray_texture
  • Train a model:

    1. Start the Visdom Visualizer

      python -m visdom.server -port PORT

      PORT is specified in train.sh

    2. Pretrain on synthesized gradient glyph image dataset

      bash ./scripts/train.sh base_gray_color GPU_ID

      GPU_ID indicates which GPU to use.

    3. Fineture on artistic glyph image dataset

      bash ./scripts/train.sh base_gray_texture GPU_ID DATA_ID FEW_SIZE

      DATA_ID indicates which artistic font is fine-tuned.
      FEW_SIZE indicates the size of few-shot set.

      It will raise an error saying:

      FileNodeFoundError: [Error 2] No such file or directory: 'chechpoints/base_gray_texture/base_gray_texture_DATA_ID_TIME/latest_net_G.pth
      

      Copy the pretrained model to above path

      cp chechpoints/base_gray_color/base_gray_color_TIME/latest_net_* chechpoints/base_gray_texture/base_gray_texture_DATA_ID_TIME/

      And start train again. It will works well.

Model Testing

  • To test a model, copy the trained model from checkpoint to pretrained_models folder (e.g., English artistic glyph transfer)

    cp chechpoints/base_gray_color/base_gray_texture_DATA_ID_TIME/latest_net_* pretrained_models/base_gray_texture_DATA_ID/
  • Test a model

    bash ./scripts/test_base_gray_texture.sh GPU_ID DATA_ID

Acknowledgements

This code is inspired by the BicycleGAN.

Special thanks to the following works for sharing their code and dataset.

Citation

If you find our work is helpful, please cite our paper:

@article{Gao2019Artistic,
  author = {Yue, Gao and Yuan, Guo and Zhouhui, Lian and Yingmin, Tang and Jianguo, Xiao},
  title = {Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning},
  journal = {ACM Trans. Graph.},
  issue_date = {November 2019},
  volume = {38},
  number = {6},
  year = {2019},
  articleno = {185},
  numpages = {12},
  url = {http://doi.acm.org/10.1145/3355089.3356574},
  publisher = {ACM}
} 

Copyright

The code and dataset are only allowed for PERSONAL and ACADEMIC usage.

Owner
Yue Gao
Researcher at Microsoft Research Asia
Yue Gao
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022