Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Overview

Euro-Truck-Simulator-2-Lane-Assist

Lane assist for ETS2, built with the ultra-fast-lane-detection model.

This project was made possible by the amazing people behind the original Ultra Fast Lane Detection paper. In addition to ibaiGorordo for his example scripts for Pytorch and rdbender for his sun valley theme for ttk.

Example Video

It is important to note that in the video I overlayed the laneAssist window on top of ETS2, unfortunately I do not yet know how to get it on top without messing with the screen capture.

Installation

Copy the repository ( Code -> Download zip ) and unpack it to a folder. Now install all the requirements.

Requirements

You must have at least python 3.7 installed for pytorch to work. To install pytorch go to their website and select the appropriate options. If you have an nvidia graphics card then select cuda, otherwise go for cpu. If you download cuda then you also have to download the cuda api from NVIDIA.

Other requirements can be installed with pip like this (if you have > python 3.10, then use pip3.10):

pip3 install -r requirements.txt

Lane Detection models

In addition to the normal requirements this application requires a lane detection model to work. This is a new deeper model from Adorable Jiang. So far from the very little testing all the models work. These models will likely run slower but work better, I have added support for these so choose if you want these or the defaults.

To download a pretrained model go to the Ultra Fast Lane Detection github page and scroll down until you see Trained models.

There are two different models to choose from. CUlane is a more stable model, but might not work in more difficult situations (like the road being white). On the other hand Tusimple is a more sporadic model that will almost certainly work in any situation. It is also worth noting that Tusimple in some cases requires some of the top of the dashboard and steering wheel to show, while CUlane doesn't. There is a tradeoff to both but I have included a way to switch between them while running the app, so downloading both of them is no issue. After you have downloaded a model, make a models folder in the root folder of the app (the folder where MainFile.py is) and move the model there.

Preparations

Before even starting the app make sure your ETS2 or any other game is in borderless mode. It is not required for the app to work, but for setting it up it is highly recommended. Also disable automatic indicators in game. To start the app, open a command prompt or terminal in the app's folder ( on windows this can be done by holding alt and right clicking ). Once the terminal is open type:

python3 MainFile.py

This will start the application and you should see two windows. One is the main window where you can start the program and change the settings. The other is the preview to show you what the program sees. Don't worry if it's black, that doesn't mean that it isn't working.

Before pressing Toggle Enable it is important to head over to the settings to configure a couple of important options.

The first is to change the position of the video capture from the general tab. I recommend starting up ETS 2 and setting the game on pause. Then move the window around by changing the position values (I recommend setting them to 0x0 and then going from there) so that the app sees the road, but preferably not the steering wheel as this can throw off the lane detection. Even though it's not recommended you might also need to change the dimensions of the screen capture. This might have to be done on 1080 or 4k monitors for example. Just if you do try to keep the aspect ratio the same (16:9)

The second important option is your input device. Even if you play on a keyboard you must have a controller selected otherwise the app will crash. The default selection is for my G29. If you also have one then be sure to make sure the controller is correct, after that you can head over to the next step.

If you do not play on a G29 then select your controller and additionally select the steering axis ( the blue slider will move with the axis ) and the button to toggle the Lane Assist ( this can usually be found by searching on google for controller button numbers ). In addition you will have to select your indicator buttons.

After that go to the final tab, and if you do have a nvidia gpu then you can enable Use GPU, after that you can hit Change Model.

Finally if you want to save your settings, most of them can be easily changed by editing MainFile.py

Usage

Once all the preparations are done let's actually use the lane assist. When you start the program it will make a virtual xbox 360 controller. You have to set the ingame steering axis to this controller, it will not recognize the controller unless put it as a secondary device. Under the main device (Should be Keyboard + controller) there are a multitude of slots, one of these slots must be the 360. This controller follows your own wheel/gamepad so managing to set it in the settings can be hard. Unfortunately this virtual controller means you will lose all force feedback from your main wheel.

Once the controller is setup in game it's time to use the app. To start the lane assist you can either press the set button on your controller or manually toggle it with Toggle Enable. You should see the lane show up on the preview and after that, Happy Trucking!

You might also like...
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

 CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Code for the IJCAI 2021 paper
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Use tensorflow to implement a Deep Neural Network for real time lane detection
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

Comments
  • "Use GPU" not functioning properly

    Hi there, I believe that "Use GPU" isn't working properly, I'm running Python 3.8.5 & OpenCV compiled with CUDA enabled as well as the Drivers and Toolkits needed.

    Clicking "Use GPU" does not save the checkmark (is that intended?), and the FPS remains the same, so I believe that it has no effect.

    Any tips to get it running with the GPU? It's unusable with 1.6 FPS so I'd love to get this working at a higher frame rate, thank you!

    PS: My GPU is a RTX 2060 so it should fit the specs.

    opened by ceddose 7
  • Software crashes upon pressing

    Software crashes upon pressing "settings"

    I followed the installation video, step by step and got the software installed. Upon launch, I press settings where the whole software crashes. I get the message "NameError: name 'wheel' is not defined. Screenshot_1

    opened by shambala12 3
  • V0.1.4

    V0.1.4

    V0.1.4 - 20.8.2022

    Minor Update

    Fixed

    • Removed a debug print.
    • Removed reduntant width and height from MainFile.py
    • Set default screencapture position to 0x0 to avoid confusion.
    opened by Tumppi066 0
Releases(v.1.0.0)
  • v.1.0.0(Aug 8, 2022)

    It seems that there is a problem with python 3.11 and 3.10 during installation of pyarrow, to fix this downgrade your python version to 3.9

    (This is fixed with the experimental version, as pyarrow is no longer a requirement.)

    Either download updater.exe or updater.py

    • They are both the same application, but I got some requests for an exe so it is now included. The exe will not detect the current installed version, so the .py is superior.
    • The installation script will always download the most up to date version of the app (optionally even development versions). It will also handle updates and show the current version change log.

    Current installer version is 0.5 (18.11.2022):

    • Added full support for the experimental branch, to see the current features head to my Trello.

    This is the only "release" the app will get (for the foreseeable future atleast) as the installation script always downloads the newest source.

    Source code(tar.gz)
    Source code(zip)
    updater.exe(9.25 MB)
    updater.py(13.36 KB)
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022