Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Overview

Maximum Likelihood Training of Score-Based Diffusion Models

This repo contains the official implementation for the paper Maximum Likelihood Training of Score-Based Diffusion Models

by Yang Song*, Conor Durkan*, Iain Murray, and Stefano Ermon. Published in NeurIPS 2021 (spotlight).


We prove the connection between the Kullback–Leibler divergence and the weighted combination of score matching losses used for training score-based generative models. Our results can be viewed as a generalization of both the de Bruijn identity in information theory and the evidence lower bound in variational inference.

Our theoretical results enable ScoreFlow, a continuous normalizing flow model trained with a variational objective, which is much more efficient than neural ODEs. We report the state-of-the-art likelihood on CIFAR-10 and ImageNet 32x32 among all flow models, achieving comparable performance to cutting-edge autoregressive models.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code

pip install -r requirements.txt

Stats files for quantitative evaluation

We provide stats files for computing FID and Inception scores for CIFAR-10 and ImageNet 32x32. You can find cifar10_stats.npz and imagenet32_stats.npz under the directory assets/stats in our Google drive. Download them and save to assets/stats/ in the code repo.

Usage

Train and evaluate our models through main.py. Here are some common options:

main.py:
  --config: Training configuration.
    (default: 'None')
  --eval_folder: The folder name for storing evaluation results
    (default: 'eval')
  --mode: <train|eval|train_deq>: Running mode: train or eval or training the Flow++ variational dequantization model
  --workdir: Working directory
  • config is the path to the config file. Our config files are provided in configs/. They are formatted according to ml_collections and should be quite self-explanatory.

    Naming conventions of config files: the name of a config file contains the following attributes:

    • dataset: Either cifar10 or imagenet32
    • model: Either ddpmpp_continuous or ddpmpp_deep_continuous
  • workdir is the path that stores all artifacts of one experiment, like checkpoints, samples, and evaluation results.

  • eval_folder is the name of a subfolder in workdir that stores all artifacts of the evaluation process, like meta checkpoints for supporting pre-emption recovery, image samples, and numpy dumps of quantitative results.

  • mode is either "train" or "eval" or "train_deq". When set to "train", it starts the training of a new model, or resumes the training of an old model if its meta-checkpoints (for resuming running after pre-emption in a cloud environment) exist in workdir/checkpoints-meta . When set to "eval", it can do the following:

    • Compute the log-likelihood on the training or test dataset.

    • Compute the lower bound of the log-likelihood on the training or test dataset.

    • Evaluate the loss function on the test / validation dataset.

    • Generate a fixed number of samples and compute its Inception score, FID, or KID. Prior to evaluation, stats files must have already been downloaded/computed and stored in assets/stats.

      When set to "train_deq", it trains a Flow++ variational dequantization model to bridge the gap of likelihoods on continuous and discrete images. Recommended if you want to compete with generative models trained on discrete images, such as VAEs and autoregressive models. train_deq mode also supports pre-emption recovery.

These functionalities can be configured through config files, or more conveniently, through the command-line support of the ml_collections package.

Configurations for training

To turn on likelihood weighting, set --config.training.likelihood_weighting. To additionally turn on importance sampling for variance reduction, use --config.training.likelihood_weighting. To train a separate Flow++ variational dequantizer, you need to first finish training a score-based model, then use --mode=train_deq.

Configurations for evaluation

To generate samples and evaluate sample quality, use the --config.eval.enable_sampling flag; to compute log-likelihoods, use the --config.eval.enable_bpd flag, and specify --config.eval.dataset=train/test to indicate whether to compute the likelihoods on the training or test dataset. Turn on --config.eval.bound to evaluate the variational bound for the log-likelihood. Enable --config.eval.dequantizer to use variational dequantization for likelihood computation. --config.eval.num_repeats configures the number of repetitions across the dataset (more can reduce the variance of the likelihoods; default to 5).

Pretrained checkpoints

All checkpoints are provided in this Google drive.

Folder structure:

  • assets: contains cifar10_stats.npz and imagenet32_stats.npz. Necessary for computing FID and Inception scores.
  • <cifar10|imagenet32>_(deep)_<vp|subvp>_(likelihood)_(iw)_(flip). Here the part enclosed in () is optional. deep in the name specifies whether the score model is a deeper architecture (ddpmpp_deep_continuous). likelihood specifies whether the model was trained with likelihood weighting. iw specifies whether the model was trained with importance sampling for variance reduction. flip shows whether the model was trained with horizontal flip for data augmentation. Each folder has the following two subfolders:
    • checkpoints: contains the last checkpoint for the score-based model.
    • flowpp_dequantizer/checkpoints: contains the last checkpoint for the Flow++ variational dequantization model.

References

If you find the code useful for your research, please consider citing

@inproceedings{song2021maximum,
  title={Maximum Likelihood Training of Score-Based Diffusion Models},
  author={Song, Yang and Durkan, Conor and Murray, Iain and Ermon, Stefano},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

This work is built upon some previous papers which might also interest you:

  • Yang Song and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution." Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.
  • Yang Song and Stefano Ermon. "Improved techniques for training score-based generative models." Proceedings of the 34th Annual Conference on Neural Information Processing Systems, 2020.
  • Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. "Score-Based Generative Modeling through Stochastic Differential Equations". Proceedings of the 9th International Conference on Learning Representations, 2021.
Owner
Yang Song
PhD Candidate in Stanford AI Lab
Yang Song
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022