Lux AI environment interface for RLlib multi-agents

Overview

Lux AI interface to RLlib MultiAgentsEnv

For Lux AI Season 1 Kaggle competition.

Please let me know if you use this, I'd like to see what people build with it!

TL;DR

The only thing you need to customise is the interface class (inheriting from multilux.lux_interface.LuxDefaultInterface). The interface needs to:

  • Implement four "toward-agent" methods:
    • observation(joint_observation, actors)
    • reward(joint_reward, actors)
    • done(joint_done, actors)
    • info(joint_info, actors)
  • Implement one "toward-environment" method:
    • actions(action_dict)
  • Manage its own actor id creation, assignment, etc. (hint citytiles don't have ids in the game engine)

Implementation diagram

Diagram

Example for training

import numpy as np

# (1) Define your custom interface for (obs, reward, done, info, actions) ---
from multilux.lux_interface import LuxDefaultInterface

class MyInterface(LuxDefaultInterface):
    def observation(self, joint_obs, actors) -> dict:
        return {a: np.array([0, 0]) for a in actors}

    def reward(self, joint_reward, actors) -> dict:
        return {a: 0 for a in actors}

    def done(self, joint_done, actors) -> dict:
        return {a: True for a in actors}

    def info(self, joint_info, actors) -> dict:
        return {a: {} for a in actors}

    def actions(self, action_dict) -> list:
        return []
    
# (2) Register environment --------------------------------------------------
from ray.tune.registry import register_env
from multilux.lux_env import LuxEnv


def env_creator(env_config):
    
    configuration = env_config.get(configuration, {})
    debug = env_config.get(debug, False)
    interface = env_config.get(interface, MyInterface)
    agents = env_config.get(agents, (None, "simple_agent"))
    
    return LuxEnv(configuration, debug,
                     interface=interface,
                     agents=agents,
                     train=True)

register_env("multilux", env_creator)

# (3) Define observation and action spaces for each actor type --------------
from gym import spaces

u_obs_space = spaces.Box(low=0, high=1, shape=(2,), dtype=np.float16)
u_act_space = spaces.Discrete(2)
ct_obs_space = spaces.Box(low=0, high=1, shape=(2,), dtype=np.float16)
ct_act_space = spaces.Discrete(2)

# (4) Instantiate agent ------------------------------------------------------
import random
from ray.rllib.agents import ppo

config = {
    "env_config": {},
    "multiagent": {
        "policies": {
            # the first tuple value is None -> uses default policy
            "unit-1": (None, u_obs_space, u_act_space, {"gamma": 0.85}),
            "unit-2": (None, u_obs_space, u_act_space, {"gamma": 0.99}),
            "citytile": (None, ct_obs_space, ct_act_space, {}),
        },
        "policy_mapping_fn":
            lambda agent_id:
                "citytile"  # Citytiles always have the same policy
                if agent_id.startswith("u_")
                else random.choice(["unit-1", "unit-2"])  # Randomly choose from unit policies
    },
}

trainer = ppo.PPOTrainer(env=LuxEnv, config=config)

# (5) Train away -------------------------------------------------------------
while True:
    print(trainer.train())

See examples/training.py


See also the LuxPythonEnvGym OpenAI-gym port by @glmcdona.

Jaime Ruiz Serra

Owner
Jaime
Deep Reinforcement Learning, Computer Vision, Robotics
Jaime
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023