Projecting interval uncertainty through the discrete Fourier transform

Overview

Projecting interval uncertainty through the discrete Fourier transform

This repository provides a method that can propagate interval uncertainty through the discrete Fourier transform while yielding the exact bounds on the Fourier amplitude and Power Spectral Density function. The algorithm applies to real sequences of intervals. The method allows technical analysts to project interval uncertainty present in the time signals to their Fourier amplitude without making assumptions about the error distribution at each time step. Thus, it is possible to calculate and analyse system responses in the frequency domain without conducting extensive Monte Carlo simulations in the time domain. The applicability of this method in practice is demonstrated by a technical application.

Disclaimer: This code was developed for illustration purposes and for proof-of-concept. Thus this code is not optimized for large-scale applications. An optimized version of the code is currently under development.

References

De Angelis, M.; Behrendt, M.; Comerford, L.; Zhang, Y.; Beer, M. (2021): Forward interval propagation through the discrete Fourier transform, The 9th international workshop on Reliable Engineering Computing, arXiv:2012.09778.

Installation

Clone the git repository on your machine, cd to the repository, open a Python3 interpreter and import the interval Fourier transform ans other useful packages

from fourier.transform import transform as intervalDFT
from fourier.application import application as app
from fourier.number import number as int_num
import numpy
from numpy import (arange, cos, exp, linspace, mean, pi,  sin, zeros) 
from matplotlib import pyplot, cm

Signal generation and interval DFT

At first time and frequency parameters and an analytical PSD function are needed to model a stochastic process.

Define parameters

wu = 2.2975 # upper cut-off frequency
T = 350 # total time length

dt = 2*pi /(2*wu) # timestep size
dw = 2*pi / T # frequency step size

t = numpy.arange(0,T,dt) # time vector
w = numpy.arange(0,wu,dw) # frequency vector

JONSWAP power spectrum

The JONSWAP power spectrum is utilised to generate stochastic processes. The required parameters are:

alpha = 0.0081 # spectral energy parameter
w_p = 0.7 # peak frequency
gamma = 3.3 # peak enhancement factor
sigma1 = 0.07 # spectral width parameter for w <= w_p
sigma2 = 0.09 # spectral width parameter for w > w_p
spectrum = app.jonswap_spectrum(w,alpha,w_p,gamma,sigma1,sigma2)

Plot the JONSWAP power spectrum

ax = app.plot_line(w,spectrum,figsize=(18,6),xlabel=r'#$x$',ylabel='$x$',color=None,lw=1,title='JONSWAP power spectrum',ax=None,label=None)
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)

fig

Generate time signal and intervalize it

To generate a stochastic process the spectral representation method is utilised. This signal is then intervalized with interval uncertainty ±0.1. Both signals are plotted.

sea_waves = app.stochastic_process(spectrum,w,t) 
pm = 0.1
sea_waves_interval = intervalDFT.intervalize(sea_waves, pm)

ax = app.plot_line(t,sea_waves,figsize=(18,6),xlabel='Time [s]',ylabel='Wave height [m]',color='rebeccapurple',lw=1,title='Signal from stationary power spectrum',ax=None,label=None)
sea_waves_interval.plot(xlabel='Time [s]',ylabel='Wave height [m]',title=r'Signal with $\pm$ '+str(pm)+' information gaps (intervals)')

fig fig

Compute the Fourier transforms

Compute the Fourier transform of the crisp signal and the interval Fourier transform for the interval signal with the selective method and the interval method. Also compute the periodogram of respective (bounded) Fourier amplitudes.

FA = intervalDFT.Fourier_amplitude(sea_waves)
BI,BS = intervalDFT.compute_amplitude_bounds(sea_waves_interval)
BI.insert(0,int_num.Interval(0,0))
BS.insert(0,int_num.Interval(0,0))

FA = app.periodogram(FA, t, dt)
BI = app.periodogram(BI, t, dt)
BS = app.periodogram(BS, t, dt)

Plot the interval Fourier transform

The amplitude of the crisp signal and both bounded Fourier amplituted are plotted.

ax = app.plot_line(w,FA,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label='Interval uncertainty: $\pm$ '+str(pm)+'')
app.plot_bounds(x=w,bounds=BI,color='cornflowerblue',alpha=0.4,ax=ax)
app.plot_bounds(x=w,bounds=BS,color='orangered',alpha=0.6,ax=ax)
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.tick_params(direction='out', length=6, width=2, labelsize=14)

fig

Application to a SDOF system

The system under investigation is a offshore wind turbine simplified to a SDOF system. The parameters are set to

R = 3 # outer radius
r = 2.8 # inner radius
h_pile = 60 # height
rho_steel = 7800 # density of steel
c = 1e5 # stiffness
k = 1e6 # damping coefficient

Get the natural frequency w0 and the damping ratio xi

w0,xi = app.wind_turbine(R,r,h_pile,rho_steel,c,k)

The response can be obtained by pushing the (intervalised) signal through the frequency response function

freq_response_precise = app.frequency_response(w,FA,w0,xi)
freq_response_BI_low,freq_response_BI_high = app.frequency_response_interval(w,BI,w0,xi)
freq_response_BS_low,freq_response_BS_high = app.frequency_response_interval(w,BS,w0,xi)

Those responses can be plotted

ax = app.plot_line(w,freq_response_precise,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label=None)
ax.fill_between(x=w,y1=freq_response_BI_low,y2=freq_response_BI_high, alpha=0.4, label='Interval', edgecolor='blue', lw=2, color='cornflowerblue')
ax.fill_between(x=w,y1=freq_response_BS_low,y2=freq_response_BS_high, alpha=0.6, label='Selective', edgecolor='red', lw=2, color='orangered')

ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.set_title(r'Interval uncertainty: $\pm$ '+str(pm)+'', fontsize=20)

ax.tick_params(direction='out', length=6, width=2, labelsize=14)
_=ax.set_xlim([0.5, 1.1])

fig

Comparison with Monte Carlo

In this section it is illustrated how severe interval uncertainty is underestimated by Monte Carlo. To show this, a signal with interval uncertainty ±0.5 is utilised and plotted.

pm = 0.5
sea_waves_interval_05 = intervalDFT.intervalize(sea_waves, pm)
sea_waves_interval_05.plot(xlabel='Time [s]',ylabel='Wave height [m]',title=r'Signal with $\pm$ '+str(pm)+' information gaps (intervals)')

fig

Generate some random signals between the bounds. All signals which are within or on the bounds are possible.

RAND_SIGNALS = sea_waves_interval_05.rand(N=20) # this picks out N (inner) random signals within the bounds

fig,ax = intervalDFT.subplots(figsize=(16,8))
for rs in RAND_SIGNALS:
    intervalDFT.plot_signal(rs,ax=ax)
sea_waves_interval_05.plot(ax=ax)
ax.grid()
_=ax.set_xlim(0,55) # underscore here is used to suppress the output of this line

fig

Computing the Fourier amplitude bounds and the periodogram of the interval signal

BI,BS = intervalDFT.compute_amplitude_bounds(sea_waves_interval_05)
BI.insert(0,int_num.Interval(0,0))
BS.insert(0,int_num.Interval(0,0))

BI = app.periodogram(BI, t, dt)
BS = app.periodogram(BS, t, dt) 

Plotting the bounds of the Fourier amplitude in comparison to the resulting bounds obtained by Monte Carlo

BI_low=[ai.lo() for ai in BI]
BI_high=[ai.hi() for ai in BI]
BS_low=[ai.lo() for ai in BS]
BS_high=[ai.hi() for ai in BS]

fig = pyplot.figure(figsize=(18,6))
ax = fig.subplots()
ax.grid()
ax.fill_between(x=w,y1=BI_low,y2=BI_high, alpha=0.4, label='Interval', edgecolor='blue', lw=2, color='cornflowerblue')
ax.fill_between(x=w,y1=BS_low,y2=BS_high, alpha=0.6, label='Selective', edgecolor='red', lw=2, color='orangered')

n_MC = 10
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    #intervalDFT.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='palegreen',lw=1,title=None,ax=ax,label=None) 
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#d7f4d7',lw=1,title=None,ax=ax,label=None) 

ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.set_title(r'Interval uncertainty: $\pm$ '+str(pm)+'', fontsize=20)

ax.tick_params(direction='out', length=6, width=2, labelsize=14)  

fig

Which increasing sample size, the range within the bounds of the interval signal is better covered. However, even a very high sample size is insufficient to get close to the bounds obtained by the interval DFT.

fig = pyplot.figure(figsize=(18,6))
ax = fig.subplots()
ax.grid()

n_MC = 1000
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#7cc47c',lw=1,title=None,ax=ax,label=None) 
    
n_MC = 100
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#a7d9a7',lw=1,title=None,ax=ax,label=None) 
    
n_MC = 10
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#d7f4d7',lw=1,title=None,ax=ax,label=None) 
    
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
_=ax.set_title('Bounds estimated by MC', fontsize=20) 

fig

Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022