PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

Overview

SimTrans-Weak-Shot-Classification

This repository contains the official PyTorch implementation of the following paper:

Weak-shot Fine-grained Classification via Similarity Transfer

Junjie Chen, Li Niu, Liu Liu, Liqing Zhang
MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
https://arxiv.org/abs/2009.09197
Accepted by NeurIPS2021.

Abstract

Recognizing fine-grained categories remains a challenging task, due to the subtle distinctions among different subordinate categories, which results in the need of abundant annotated samples. To alleviate the data-hungry problem, we consider the problem of learning novel categories from web data with the support of a clean set of base categories, which is referred to as weak-shot learning. In this setting, we propose to transfer pairwise semantic similarity from base categories to novel categories. Specifically, we firstly train a similarity net on clean data, and then leverage the transferred similarity to denoise web training data using two simple yet effective strategies. In addition, we apply adversarial loss on similarity net to enhance the transferability of similarity. Comprehensive experiments on three fine-grained datasets demonstrate the effectiveness of our setting and method.

1. Setting

In practice, we often have a set of base categories with sufficient well-labeled data, and the problem is how to learn novel categories with less expense, in which base categories and novel categories have no overlap. Such problem motivates zero-shot learning, few-shot learning, as well as our setting. To bridge the gap between base categories and novel categories, zero-shot learning requires category-level semantic representation for all categories, while few-shot learning requires a few clean examples for novel categories. Considering the drawbacks of zero/few-shot learning and the accessibility of free web data, we intend to learn novel categories by virtue of web data with the support of a clean set of base categories.

2. Our Method

Specifically, our framework consists of two training phases. Firstly, we train a similarity net (SimNet) on base training set, which feeds in two images and outputs the semantic similarity. Secondly, we apply the trained SimNet to obtain the semantic similarities among web images. In this way, the similarity is transferred from base categories to novel categories. Based on the transferred similarities, we design two simple yet effective methods to assist in learning the main classifier on novel training set. (1) Sample weighting (i.e., assign small weights to the images dissimilar to others) reduces the impact of outliers (web images with incorrect labels) and thus alleviates the problem of noise overfitting. (2) Graph regularization (i.e., pull close the features of semantically similar samples) prevents the feature space from being disturbed by noisy labels. In addition, we propose to apply adversarial loss on SimNet to make it indistinguishable for base categories and novel categories, so that the transferability of similarity is strengthened.

3. Results

Extensive experiments on three fine-grained datasets have demonstrated the potential of our learning scenario and the effectiveness of our method. For qualitative analysis, on the one hand, the clean images are assigned with high weights, while the images belonging to outlier are assigned with low weights; on the other hand, the transferred similarities accurately portray the semantic relations among web images.

4. Experiment Codebase

4.1 Data

We provide the packages of CUB, Car, FGVC, and WebVision at Baidu Cloud (access code: BCMI).

The original packages are split by split -b 10G ../CUB.zip CUB.zip., thus we need merge by cat CUB.zip.a* > CUB.zip before decompression.

The ImageNet dataset is publicly available, and all data files are configured as:

├── CUB
├── Car
├── Air
├── WebVision
├── ImageNet:
  ├── train
      ├── ……
  ├── val
      ├── ……
  ├── ILSVRC2012_validation_ground_truth.txt
  ├── meta.mat
  ├── train_files.txt

Just employ --data_path ANY_PATH/CUB to specify the data dir.

4.2 Install

See requirement.txt.

4.3 Evaluation

The trained models are released as trained_models.zip at Baidu Cloud (access code: BCMI).

The command in _scripts/DATASET_NAME/eval.sh is used to evaluate the model.

4.4 Training

We provide the full scripts for CUB dataset in _scripts/CUB/ dir as an example.

For other datasets, just change the data path, i.e., --data_path ANY_PATH/WebVision.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [pdf] [supp] [arxiv]:

@inproceedings{SimTrans2021,
title={Weak-shot Fine-grained Classification via Similarity Transfer},
author={Chen, Junjie and Niu, Li and Liu, Liu and Zhang, Liqing},
booktitle={NeurIPS},
year={2021}}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022