PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

Overview

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection

Introduction

This is a pytorch implementation of Gen-LaneNet, which predicts 3D lanes from a single image. Specifically, Gen-LaneNet is a unified network solution that solves image encoding, spatial transform of features and 3D lane prediction simultaneously. The method refers to the ECCV 2020 paper:

'Gen-LaneNet: a generalized and scalable approach for 3D lane detection', Y Guo, etal. ECCV 2020. [eccv][arxiv]

Key features:

  • A geometry-guided lane anchor representation generalizable to novel scenes.

  • A scalable two-stage framework that decouples the learning of image segmentation subnetwork and geometry encoding subnetwork.

  • A synthetic dataset for 3D lane detection [repo] [data].

Another baseline

This repo also includes an unofficial implementation of '3D-LaneNet' in pytorch for comparison. The method refers to

"3d-lanenet: end-to-end 3d multiple lane detection", N. Garnet, etal., ICCV 2019. [paper]

Requirements

If you have Anaconda installed, you can directly import the provided environment file.

conda env update --file environment.yaml

Those important packages includes:

  • opencv-python 4.1.0.25
  • pytorch 1.4.0
  • torchvision 0.5.0
  • tensorboard 1.15.0
  • tensorboardx 1.7
  • py3-ortools 5.1.4041

Data preparation

The 3D lane detection method is trained and tested on the 3D lane synthetic dataset. Running the demo code on a single image should directly work. However, repeating the training, testing and evaluation requires to prepare the dataset:

If you prefer to build your own data splits using the dataset, please follow the steps described in the 3D lane synthetic dataset repository. All necessary codes are included here already.

Run the Demo

python main_demo_GenLaneNet_ext.py

Specifically, this code predict 3D lane from an image given known camera height and pitch angle. Pretrained models for the segmentation subnetwork and the 3D geometry subnetwork are loaded. Meanwhile, anchor normalization parameters wrt. the training set are also loaded. The demo code will produce lane predication from a single image visualized in the following figure.

The lane results are visualized in three coordinate frames, respectively image plane, virtual top-view, and ego-vehicle coordinate frame. The lane-lines are shown in the top row and the center-lines are shown in the bottom row.

How to train the model

Step 1: Train the segmentation subnetwork

The training of Gen-LaneNet requires to first train the segmentation subnetwork, ERFNet.

  • The training of the ERFNet is based on a pytorch implementation [repo] modified to train the model on the 3D lane synthetic dataset.

  • The trained model should be saved as 'pretrained/erfnet_model_sim3d.tar'. A pre-trained model is already included.

Step 2: Train the 3D-geometry subnetwork

python main_train_GenLaneNet_ext.py
  • Set 'args.dataset_name' to a certain data split to train the model.
  • Set 'args.dataset_dir' to the folder saving the raw dataset.
  • The trained model will be saved in the directory corresponding to certain data split and model name, e.g. 'data_splits/illus_chg/Gen_LaneNet_ext/model*'.
  • The anchor offset std will be recorded for certain data split at the same time, e.g. 'data_splits/illus_chg/geo_anchor_std.json'.

The training progress can be monitored by tensorboard as follows.

cd datas_splits/Gen_LaneNet_ext
./tensorboard  --logdir ./

Batch testing

python main_test_GenLaneNet_ext.py
  • Set 'args.dataset_name' to a certain data split to test the model.
  • Set 'args.dataset_dir' to the folder saving the raw dataset.

The batch testing code not only produces the prediction results, e.g., 'data_splits/illus_chg/Gen_LaneNet_ext/test_pred_file.json', but also perform full-range precision-recall evaluation to produce AP and max F-score.

Other methods

In './experiments', we include the training codes for other variants of Gen-LaneNet models as well as for the baseline method 3D-LaneNet as well as its extended version integrated with the new anchor proposed in Gen-LaneNet. Interested users are welcome to repeat the full set of ablation study reported in the gen-lanenet paper. For example, to train 3D-LaneNet:

cd experiments
python main_train_3DLaneNet.py

Evaluation

Stand-alone evaluation can also be performed.

cd tools
python eval_3D_lane.py

Basically, you need to set 'method_name' and 'data_split' properly to compare the predicted lanes against ground-truth lanes. Evaluation details can refer to the 3D lane synthetic dataset repository or the Gen-LaneNet paper. Overall, the evaluation metrics include:

  • Average Precision (AP)
  • max F-score
  • x-error in close range (0-40 m)
  • x-error in far range (40-100 m)
  • z-error in close range (0-40 m)
  • z-error in far range (40-100 m)

We show the evaluation results comparing two methods:

  • "3d-lanenet: end-to-end 3d multiple lane detection", N. Garnet, etal., ICCV 2019
  • "Gen-lanenet: a generalized and scalable approach for 3D lane detection", Y. Guo, etal., Arxiv, 2020 (GenLaneNet_ext in code)

Comparisons are conducted under three distinguished splits of the dataset. For simplicity, only lane-line results are reported here. The results from the code could be marginally different from that reported in the paper due to different random splits.

  • Standard
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 89.3 86.4 0.068 0.477 0.015 0.202
Gen-LaneNet 90.1 88.1 0.061 0.496 0.012 0.214
  • Rare Subset
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 74.6 72.0 0.166 0.855 0.039 0.521
Gen-LaneNet 79.0 78.0 0.139 0.903 0.030 0.539
  • Illumination Change
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 74.9 72.5 0.115 0.601 0.032 0.230
Gen-LaneNet 87.2 85.3 0.074 0.538 0.015 0.232

Visualization

Visual comparisons to the ground truth can be generated per image when setting 'vis = True' in 'tools/eval_3D_lane.py'. We show two examples for each method under the data split involving illumination change.

  • 3D-LaneNet

  • Gen-LaneNet

Citation

Please cite the paper in your publications if it helps your research:

@article{guo2020gen,
  title={Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection},
  author={Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang, Jinghao Miao, Jingao Wang, and Tae Eun Choe},
  booktitle={Computer Vision - {ECCV} 2020 - 16th European Conference},
  year={2020}
}

Copyright and License

The copyright of this work belongs to Baidu Apollo, which is provided under the Apache-2.0 license.

Owner
Yuliang Guo
Researcher in Computer Vision
Yuliang Guo
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022