This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.

Overview

NoW Evaluation

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.

Evaluation metric

Given a single monocular image, the challenge consists of reconstructing a 3D face. Since the predicted meshes occur in different local coordinate systems, the reconstructed 3D mesh is rigidly aligned (rotation, translation, and scaling) to the scan using a set of corresponding landmarks between the prediction and the scan. We further perform a rigid alignment based on the scan-to-mesh distance (which is the absolute distance between each scan vertex and the closest point in the mesh surface) between the ground truth scan, and the reconstructed mesh using the landmarks alignment as initialization. For more details, see the NoW Website or the RingNet paper.

Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black
Computer Vision and Pattern Recognition (CVPR) 2019

Clone the repository

git clone https://github.com/soubhiksanyal/now_evaluation.git

Installation

Please install the virtual environment

mkdir <your_home_dir>/.virtualenvs
python3 -m venv <your_home_dir>/.virtualenvs/now_evaluation
source <your_home_dir>/.virtualenvs/now_evaluation/bin/activate

Make sure your pip version is up-to-date:

pip install -U pip

Install the requirements by using:

pip install -r requirements.txt

Install mesh processing libraries from MPI-IS/mesh within the virtual environment.

Installing Scan2Mesh distance:

Clone the flame-fitting repository and copy the required folders by the following comments

git clone https://github.com/Rubikplayer/flame-fitting.git
cp flame-fitting/smpl_webuser now_evaluation/smpl_webuser -r
cp flame-fitting/sbody now_evaluation/sbody -r

Clone Eigen and copy the it to the following folder

git clone https://gitlab.com/libeigen/eigen.git
cp eigen now_evaluation/sbody/alignment/mesh_distance/eigen -r

Edit the file 'now_evaluation/sbody/alignment/mesh_distance/setup.py' to set EIGEN_DIR to the location of Eigen. Then compile the code by following command

cd now_evaluation/sbody/alignment/mesh_distance
make

The installation of Scan2Mesh is followed by the codebase provided by flame-fitting. Please check that repository for more detailed instructions on Scan2Mesh installation.

Evaluation

Download the NoW Dataset and the validation set scans from the Now websiste, and predict 3D faces for all validation images.

Check data setup

Before running the now evaluation, 1) check that the predicted meshes can be successfuly loaded by the used mesh loader by running

python check_predictions.py <predicted_mesh_path>

Running this loads the <predicted_mesh_path> mesh and exports it to ./predicted_mesh_export.obj. Please check if this file can be loaded by e.g. MeshLab or any other mesh loader, and that the resulting mesh looks like the input mesh.

2) check that the landmarks for the predicted meshes are correct by running

python check_predictions.py <predicted_mesh_path> <predicted_mesh_landmark_path> <gt_scan_path> <gt_lmk_path> 

Running this loads the <predicted_mesh_path> mesh, rigidly aligns it with the the scan <gt_scan_path>, and outputs the aligned mesh to ./predicted_mesh_aligned.obj, and the cropped scan to ./cropped_scan.obj. Please check if the output mesh and scan are rigidly aligned by jointly opening them in e.g. MeshLab.

Error computation

To run the now evaluation on the validation set, run

python compute_error.py

The function in metric_computation() in compute_error.py is used to compute the error metric. You can run python compute_error.py <dataset_folder> <predicted_mesh_folder> <validatton_or_test_set>. For more options please see compute_error.py

The predicted_mesh_folder should in a similar structure as mentioned in the RingNet website.

Prior to computing the point-to-surface distance, a rigid alignment between each predicted mesh and the scan is computed. The rigid alignment computation requires for each predicted mesh a file with following 7 landmarks:

Visualization

Visualization of the reconstruction error is best done with a cumulative error curve. To generate a cumulative error plot, call generating_cumulative_error_plots() in the cumulative_errors.py with the list of output files and the corresponding list method names.

Note that ground truth scans are only provided for the validation set. In order to participate in the NoW challenge, please submit the test set predictions to [email protected] as described here.

Known issues

The used mesh loader is unable to load OBJ files with vertex colors appended to the vertices. I.e. if the OBJ contains lines of the following format v vx vy vz cr cg cb\n, export the meshes without vertex colors.

License

By using the model or the code code, you acknowledge that you have read the license terms of RingNet, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not use the code.

Citing

This codebase was developed for evaluation of the RingNet project. When using the code or NoW evaluation results in a scientific publication, please cite

@inproceedings{RingNet:CVPR:2019,
title = {Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision},
author = {Sanyal, Soubhik and Bolkart, Timo and Feng, Haiwen and Black, Michael},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
month = jun,
year = {2019},
month_numeric = {6}
}
Owner
Soubhik Sanyal
Currently Applied Scientist at Amazon Research PhD Student
Soubhik Sanyal
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022